Guaranteed non-asymptotic confidence regions in system identification

In this paper we consider the problem of constructing confidence regions for the parameters of identified models of dynamical systems. Taking a major departure from the previous literature on the subject, we introduce a new approach called 'Leave-out Sign-dominant Correlation Regions' (LSCR) which delivers confidence regions with guaranteed probability. All results hold rigorously true for any finite number of data points and no asymptotic theory is involved. Moreover, prior knowledge on the noise affecting the data is reduced to a minimum. The approach is illustrated on several simulation examples, showing that it delivers practically useful confidence sets with guaranteed probabilities.

[1]  Mario Milanese,et al.  H∞ identification and model quality evaluation , 1997, IEEE Trans. Autom. Control..

[2]  Laura Giarré,et al.  Model quality evaluation in set membership identification , 1997, Autom..

[3]  Erik Weyer,et al.  Non-asymptotic confidence ellipsoids for the least-squares estimate , 2002, Autom..

[4]  Lennart Ljung,et al.  Using the bootstrap to estimate the variance in the case of undermodeling , 2002, IEEE Trans. Autom. Control..

[5]  S. Bittanti,et al.  Assessing the quality of identified models through the asymptotic theory - when is the result reliable? , 2004, Autom..

[6]  Laura Giarré,et al.  Identification and Model Quality Evaluation , 1997 .

[7]  J. A. Hartigan,et al.  Using Subsample Values as Typical Values , 1969 .

[8]  Marco Lovera,et al.  Bootstrap-based estimates of uncertainty in subspace identification methods , 2000, Autom..

[9]  Lennart Ljung,et al.  Estimating Linear Time-invariant Models of Nonlinear Time-varying Systems , 2001, Eur. J. Control.

[10]  Erik Weyer,et al.  Non-asymptotic confidence sets for the parameters of ARMAX models , 2004 .

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  Laura Giarré,et al.  Identification of approximated hammerstein models in a worst-case setting , 2002, IEEE Trans. Autom. Control..

[13]  Lennart Ljung,et al.  Model Validation and Model Error Modeling , 1999 .

[14]  Sergio Bittanti,et al.  Model quality assessment for instrumental variable methods: use of the asymptotic theory in practice , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  R. Tempo,et al.  Membership set estimators: size, optimal inputs, complexity and relations with least squares , 1995 .

[16]  L. Gordon,et al.  Completely Separating Groups in Subsampling , 1974 .

[17]  Andrea Garulli,et al.  Conditional central algorithms for worst case set-membership identification and filtering , 2000, IEEE Trans. Autom. Control..

[18]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[19]  Erik Weyer,et al.  Finite sample properties of system identification methods , 2002, IEEE Trans. Autom. Control..

[20]  M. Campi,et al.  New results on the asymptotic theory of system identification for the assessment of the quality of estimated models , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[21]  Erik Weyer,et al.  Non-asymptotic quality assessment of generalised FIR models with periodic inputs , 2004, Autom..

[22]  Lennart Ljung,et al.  Identification, Model Validation and Control , 1997 .

[23]  Erik Weyer,et al.  Non-asymptotic quality assessment of generalised FIR models , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[24]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[25]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[26]  J. A. Hartigan Exact Confidence Intervals in Regression Problems with Independent Symmetric Errors , 1970 .

[27]  Er-Wei Bai,et al.  Bounded-error parameter estimation: Noise models and recursive algorithms , 1996, Autom..

[28]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[29]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..