DASH: Deep Learning for the Automated Spectral Classification of Supernovae and Their Hosts

We present DASH (Deep Automated Supernova and Host classifier), a novel software package that automates the classification of the type, age, redshift, and host galaxy of supernova spectra. DASH makes use of a new approach that does not rely on iterative template matching techniques like all previous software, but instead classifies based on the learned features of each supernova's type and age. It has achieved this by employing a deep convolutional neural network to train a matching algorithm. This approach has enabled DASH to be orders of magnitude faster than previous tools, being able to accurately classify hundreds or thousands of objects within seconds. We have tested its performance on four years of data from the Australian Dark Energy Survey (OzDES). The deep learning models were developed using TensorFlow, and were trained using over 4000 supernova spectra taken from the CfA Supernova Program and the Berkeley SN Ia Program as used in SNID (Supernova Identification software, Blondin & Tonry 2007). Unlike template matching methods, the trained models are independent of the number of spectra in the training data, which allows for DASH's unprecedented speed. We have developed both a graphical interface for easy visual classification and analysis of supernovae, and a Python library for the autonomous and quick classification of several supernova spectra. The speed, accuracy, user-friendliness, and versatility of DASH presents an advancement to existing spectral classification tools. We have made the code publicly available on GitHub and PyPI (pip install astrodash) to allow for further contributions and development. The package documentation is available at this https URL

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[3]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[4]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[5]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[6]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[7]  P. Pinto,et al.  The type Ia supernova width–luminosity relation , 2000, astro-ph/0006171.

[8]  R. Ellis,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[9]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[10]  J. Billingsley Mathematics for Control , 2005 .

[11]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[12]  W. M. Wood-Vasey,et al.  Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes , 2007, astro-ph/0701510.

[13]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[14]  S. Smartt,et al.  Massive stars exploding in a He-rich circumstellar medium – II. The transitional case of SN 2005la , 2008, 0801.2278.

[15]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[16]  G. Graves,et al.  OPTICAL SPECTROSCOPY OF TYPE Ia SUPERNOVAE , 2008, The Astronomical Journal.

[17]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[18]  Canada.,et al.  Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.

[19]  L. Deng,et al.  The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.

[20]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[21]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[22]  A. Riess,et al.  THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE , 2000, The Astronomical Journal.

[23]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[24]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[25]  M. Modjaz,et al.  SuperNova IDentification spectral templates of 70 stripped-envelope core-collapse supernovae , 2014, 1405.1437.

[26]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[27]  Pavel Hála,et al.  Spectral classification using convolutional neural networks , 2014, ArXiv.

[28]  S. Jha,et al.  OPTICAL SPECTRA OF 73 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE , 2014, 1405.1910.

[29]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors. , 2014, 1404.2626.

[30]  Francisco Förster,et al.  Discovery and Classification of the z=1.86 SLSNe: DES15E2mlf , 2015 .

[31]  Erik Tollerud,et al.  Software Use in Astronomy: an Informal Survey , 2015, ArXiv.

[32]  O. Graur,et al.  ANALYZING THE LARGEST SPECTROSCOPIC DATA SET OF STRIPPED SUPERNOVAE TO IMPROVE THEIR IDENTIFICATIONS AND CONSTRAIN THEIR PROGENITORS , 2015, 1510.08049.

[33]  O. Graur,et al.  THE SPECTRAL SN-GRB CONNECTION: SYSTEMATIC SPECTRAL COMPARISONS BETWEEN TYPE Ic SUPERNOVAE AND BROAD-LINED TYPE Ic SUPERNOVAE WITH AND WITHOUT GAMMA-RAY BURSTS , 2015, 1509.07124.

[34]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[35]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[36]  B. A. Bassett,et al.  Discovery and Classification of DES15E1kwg and DES15X3kqv by SALT and AAT , 2015 .

[37]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  R. Nichol,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results , 2015, 1504.03039.

[39]  Geraint F. Lewis,et al.  Classification of 3 DES Supernovae with OzDES , 2016 .

[40]  A. M. M. Trindade,et al.  Exploring the spectroscopic diversity of Type Ia supernovae with dracula: a machine learning approach , 2015, 1512.06810.

[41]  R. Margutti,et al.  An Open Catalog for Supernova Data , 2016, 1605.01054.

[42]  N. E. Sommer,et al.  Correction to ATel #9636 - Missing Table , 2016 .

[43]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[44]  Tom Charnock,et al.  Deep Recurrent Neural Networks for Supernovae Classification , 2016, ArXiv.

[45]  O. Lahav,et al.  PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING , 2016, 1603.00882.

[46]  D. Parkinson,et al.  A cosmographic analysis of the transition to acceleration using SN-Ia and BAO , 2016, 1607.01884.

[47]  N. Palanque-Delabrouille,et al.  Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning , 2016, 1608.05423.

[48]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[49]  N. V. Karpenka,et al.  A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables , 2017, 1706.07573.

[50]  A. Aniyan,et al.  Classifying Radio Galaxies with the Convolutional Neural Network , 2017, 1705.03413.

[51]  Pablo A. Estévez,et al.  Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection , 2017, ArXiv.

[52]  N. E. Sommer,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release , 2017, 1708.04526.

[53]  C. Scheidegger,et al.  Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream , 2018, 1801.07323.

[54]  A. Moss Improved Photometric Classification of Supernovae using Deep Learning , 2018, 1810.06441.

[55]  Gautham Narayan,et al.  RAPID: Early Classification of Explosive Transients Using Deep Learning , 2019, Publications of the Astronomical Society of the Pacific.

[56]  D. Boudon,et al.  4MOST: Project overview and information for the First Call for Proposals , 2019, 1903.02464.