Reconnaissance Basement Geology and Tectonics of North Zealandia

New rock dredge samples supply key information to establish the tectonic and geological framework of the northern two‐thirds of the 95% submerged Zealandia continent. The R/V Investigator voyage IN2016T01 to the Fairway Ridge, Coral Sea, obtained poorly sorted poly‐lithologic pebbly to cobbly sandstones, well sorted fine grained sandstones, mudstones, bioclastic limestones, and basaltic lavas. Post‐cruise analytical work comprised petrography, whole rock geochemical and Sr and Nd isotopic analyses, and U‐Pb zircon, Rb‐Sr, and Ar‐Ar geochronology. A Fairway Ridge cobbly sandstone has a ∼95 Ma (early Late Cretaceous) depositional age; two biotite granite cobbles are 111 ± 1 and 128 ± 1 Ma in age, and some volcanic pebbles are also likely Early Cretaceous. Fairway Ridge basalts have intraplate alkaline chemistry and are of Late Eocene age (∼40–36 Ma). By analogy with South Zealandia, we interpret strong positive continental magnetic anomalies of North Zealandia to mainly result from Late Cretaceous to Cenozoic intraplate basalts, many of them rift‐related lavas. A new basement geological map of North Zealandia shows the position of the Mesozoic Gondwana magmatic arc axis (Median Batholith) and other major geological units. This study completes onland and offshore reconnaissance geological mapping of the entire 5 Mkm2 Zealandia continent.

[1]  C. Uruski A possible Jurassic age for the New Caledonia Trough and implications for Zealandia’s history , 2023, New Zealand Journal of Geology and Geophysics.

[2]  N. Evans,et al.  Mapping the 4D Lithospheric Architecture of Zealandia Using Zircon O and Hf Isotopes in Plutonic Rocks , 2023, Goldschmidt Abstracts.

[3]  W. Roest,et al.  The Norfolk Ridge: A Proximal Record of the Tonga‐Kermadec Subduction Initiation , 2023, Geochemistry, Geophysics, Geosystems.

[4]  Laura A. Miller,et al.  The isotopic origin of Lord Howe Island reveals secondary mantle plume twinning in the Tasman Sea , 2023, Chemical Geology.

[5]  P. Durance,et al.  Detailed 40Ar/39Ar Geochronology of the Loyalty and Three Kings Ridges Clarifies the Extent and Sequential Development of Eocene to Miocene Southwest Pacific Remnant Volcanic Arcs , 2022, Geochemistry, Geophysics, Geosystems.

[6]  J. Ramezani,et al.  Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology , 2022, Scientific Reports.

[7]  J. Crampton,et al.  Palaeogeographic evolution of Zealandia: mid-Cretaceous to present , 2022, New Zealand Journal of Geology and Geophysics.

[8]  C. Kreemer,et al.  New maps of global geological provinces and tectonic plates , 2022, Earth-Science Reviews.

[9]  A. Kemp,et al.  Early cretaceous tectonic setting of eastern Australia: Evidence from the subduction-related Morton Igneous Association of Southeast Queensland , 2021, Lithos.

[10]  J. Valley,et al.  Stable and transient isotopic trends in the crustal evolution of Zealandia Cordillera , 2021 .

[11]  W. Griffin,et al.  Detrital zircon provenance of Permian to Triassic Gondwana sequences, Zealandia and eastern Australia , 2021, New Zealand Journal of Geology and Geophysics.

[12]  E. al.,et al.  Supplemental Material: Phanerozoic record of mantle-dominated arc magmatic surges in the Zealandia Cordillera , 2021, Geology.

[13]  W. Roest,et al.  Large-scale margin collapses along a partly drowned, isolated carbonate platform (Lansdowne Bank, SW Pacific Ocean) , 2021, Marine Geology.

[14]  R. Cooper,et al.  Evolution of the East Gondwana convergent margin in Antarctica, southern Australia and New Zealand from the Neoproterozoic to latest Devonian , 2021 .

[15]  E. al.,et al.  A hidden Rodinian lithospheric keel beneath Zealandia, Earth’s newly recognized continent , 2021, Geology.

[16]  P. Durance,et al.  The Norfolk Ridge seamounts: Eocene–Miocene volcanoes near Zealandia’s rifted continental margin , 2020 .

[17]  C. Spandler,et al.  Continental Crustal Growth Processes Revealed by Detrital Zircon Petrochronology: Insights From Zealandia , 2020, Journal of Geophysical Research: Solid Earth.

[18]  H. Campbell,et al.  Pre-Late Cretaceous basement terranes of the Gondwana active margin of New Caledonia , 2020 .

[19]  C. Uruski Seismic recognition of igneous rocks of the Deepwater Taranaki Basin, New Zealand, and their distribution , 2020, New Zealand Journal of Geology and Geophysics.

[20]  Yue-heng Yang,et al.  Allanite U–Th–Pb geochronology by ion microprobe , 2020 .

[21]  M. Gurnis,et al.  Continental-scale geographic change across Zealandia during Paleogene subduction initiation , 2020, Geology.

[22]  B. Davy,et al.  Cretaceous intracontinental rifting at the southern Chatham Rise margin and initialisation of seafloor spreading between Zealandia and Antarctica , 2020 .

[23]  R. Sutherland,et al.  Eocene to Miocene Subduction Initiation Recorded in Stratigraphy of Reinga Basin, Northwest New Zealand , 2020, Tectonics.

[24]  N. Mortimer,et al.  Volcanoes of Zealandia and the Southwest Pacific , 2020 .

[25]  I. Wright,et al.  Early Cretaceous greywacke from Colville Knolls, New Zealand , 2020, New Zealand Journal of Geology and Geophysics.

[26]  N. Mortimer,et al.  Eocene nephelinite and basanite from the Fairway Ridge, North Zealandia , 2019, Deep Sea Research Part I: Oceanographic Research Papers.

[27]  W. Roest,et al.  Neogene-Quaternary architecture and sedimentary processes on an isolated carbonate-fed deep-water basin (Fairway Basin, Southwest Pacific) , 2019, Marine Geology.

[28]  S. Miura,et al.  Crustal Structure Across the Lord Howe Rise, Northern Zealandia, and Rifting of the Eastern Gondwana Margin , 2019, Journal of Geophysical Research: Solid Earth.

[29]  R. Maas,et al.  Reconnaissance Basement Geology and Tectonics of South Zealandia , 2019, Tectonics.

[30]  S. Micklethwaite,et al.  Magma production along the Lord Howe Seamount Chain, northern Zealandia , 2019, Geological Magazine.

[31]  M. Storey,et al.  Dating agpaitic rocks: A multi-system (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) isotopic study of layered nepheline syenites from the Ilímaussaq complex, Greenland , 2019, Lithos.

[32]  S. Williams,et al.  Modelling and visualising distributed crustal deformation of Australia and Zealandia using GPlates 2.0 , 2018, ASEG Extended Abstracts.

[33]  G. Rosenbaum,et al.  Continuation of the Ross–Delamerian Orogen: insights from eastern Australian detrital-zircon data , 2018 .

[34]  G. Rosenbaum The Tasmanides: Phanerozoic Tectonic Evolution of Eastern Australia , 2018, Annual Review of Earth and Planetary Sciences.

[35]  T. Andersen,et al.  Magmatic Evolution during the Cretaceous Transition from Subduction to Continental Break-up of the Eastern Gondwana Margin (New Zealand) documented by in-situ Zircon O–Hf Isotopes and Bulk-rock Sr–Nd Isotopes , 2018 .

[36]  W. Roest,et al.  New Caledonia Obducted Peridotite Nappe: Offshore Extent and Implications for Obduction and Postobduction Processes , 2018 .

[37]  J. Cottle,et al.  Long‐Term Geochemical and Geodynamic Segmentation of the Paleo‐Pacific Margin of Gondwana: Insight From the Antarctic and Adjacent Sectors , 2017 .

[38]  M. Searle,et al.  Evidence for melting mud in Earth's mantle from extreme oxygen isotope signatures in zircon , 2017 .

[39]  J. Collot,et al.  Deepwater Fold‐and‐Thrust Belt Along New Caledonia's Western Margin: Relation to Post‐obduction Vertical Motions , 2017 .

[40]  S. Micklethwaite,et al.  Regional volcanism of northern Zealandia: post-Gondwana break-up magmatism on an extended, submerged continent , 2017, Special Publications.

[41]  P. King,et al.  Zealandia: Earth’s Hidden Continent , 2017 .

[42]  R. Sutherland,et al.  Seismic stratigraphy and paleogeographic evolution of Fairway Basin, Northern Zealandia, Southwest Pacific: from Cretaceous Gondwana breakup to Cenozoic Tonga–Kermadec subduction , 2017 .

[43]  R. Müller,et al.  Global plate boundary evolution and kinematics since the late Paleozoic , 2016 .

[44]  S. Micklethwaite,et al.  Melanesian back-arc basin and arc development: constraints from the eastern Coral Sea , 2016 .

[45]  J. Ramezani,et al.  Extension-facilitated pulsed S-I-A-type “flare-up” magmatism at 370 Ma along the southeast Gondwana margin in New Zealand: Insights from U-Pb geochronology and geochemistry , 2016 .

[46]  S. Haubrock,et al.  Petlab: New Zealand’s national rock catalogue and geoanalytical database , 2016 .

[47]  W. Griffin,et al.  Perspectives on Cretaceous Gondwana break-up from detrital zircon provenance of southern Zealandia sandstones , 2016, Geological Magazine.

[48]  L. Heath,et al.  The geology, geochronology and affiliation of the Glenroy Complex and adjacent plutonic rocks, southeast Nelson , 2016 .

[49]  S. Bowring,et al.  Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II) , 2015 .

[50]  S. Bowring,et al.  Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I) , 2015 .

[51]  T. Hashimoto,et al.  Triassic–Jurassic granites on the Lord Howe Rise, northern Zealandia , 2015 .

[52]  J. Saleeby,et al.  The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs , 2015 .

[53]  W. Griffin,et al.  Detrital zircon ages in Buller and Takaka terranes, New Zealand: constraints on early Zealandia history , 2015 .

[54]  S. Cox,et al.  Mixing between enriched lithospheric mantle and crustal components in a short-lived subduction-related magma system, Dry Valleys area, Antarctica: Insights from U-Pb geochronology, Hf isotopes, and whole-rock geochemistry , 2015 .

[55]  R. Fleck,et al.  40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA , 2014 .

[56]  T. Hashimoto,et al.  Structural analysis of extended Australian continental crust: Capel and Faust basins, Lord Howe Rise , 2014 .

[57]  P. Forsyth,et al.  High-level stratigraphic scheme for New Zealand rocks , 2014 .

[58]  B. Pelletier,et al.  Eocene and Oligocene basins and ridges of the Coral Sea‐New Caledonia region: Tectonic link between Melanesia, Fiji, and Zealandia , 2014 .

[59]  J. Cottle,et al.  Laser-ablation split-stream ICP petrochronology , 2013 .

[60]  R. Sutherland,et al.  Stratigraphy of the southern Norfolk Ridge and the Reinga Basin: A record of initiation of Tonga–Kermadec–Northland subduction in the southwest Pacific , 2012 .

[61]  J. Veevers Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland , 2012 .

[62]  D. Günther,et al.  Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines , 2011 .

[63]  B. Kennett,et al.  AusMoho: the variation of Moho depth in Australia , 2011 .

[64]  J. Blichert‐Toft,et al.  Synthetic zircon doped with hafnium and rare earth elements: A reference material for in situ hafnium isotope analysis , 2011 .

[65]  J. Bowring,et al.  An algorithm for U‐Pb isotope dilution data reduction and uncertainty propagation , 2011 .

[66]  J. Bowring,et al.  Engineering cyber infrastructure for U‐Pb geochronology: Tripoli and U‐Pb_Redux , 2011 .

[67]  L. Yongsheng,et al.  Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS , 2010 .

[68]  D. May,et al.  Interactions of 3D mantle flow and continental lithosphere near passive margins , 2010 .

[69]  J. Hellstrom,et al.  Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction , 2010 .

[70]  N. Mortimer,et al.  Location and migration of Miocene-Quaternary volcanic arcs in the SW Pacific region , 2010 .

[71]  J. Collot,et al.  Mesozoic history of the Fairway‐Aotea Basin: Implications for the early stages of Gondwana fragmentation , 2009 .

[72]  D. Barker,et al.  Extensional and magmatic nature of the Campbell Plateau and Great South Basin from deep crustal studies , 2009 .

[73]  W. Griffin,et al.  Geochronology and provenance of the Late Paleozoic accretionary wedge and Gympie Terrane, New England Orogen, eastern Australia* , 2009 .

[74]  A. Crawford,et al.  Seismic stratigraphy and structure of the Northland Plateau and the development of the Vening Meinesz transform margin, SW Pacific Ocean , 2009 .

[75]  R. Cook,et al.  Correlation of basement rocks from Waka Nui‐1 and Awhitu‐1, and the Jurassic regional geology of Zealandia , 2009 .

[76]  F. Klingelhoefer,et al.  Tectonic history of northern New Caledonia Basin from deep offshore seismic reflection: Relation to late Eocene obduction in New Caledonia, southwest Pacific , 2008 .

[77]  J. Blichert‐Toft The Hf isotopic composition of zircon reference material 91500 , 2008 .

[78]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[79]  F. Hauff,et al.  Continuation of the New England Orogen, Australia, beneath the Queensland Plateau and Lord Howe Rise , 2008 .

[80]  K. Gohl,et al.  Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates , 2008 .

[81]  F. Klingelhoefer,et al.  Crustal structure of the basin and ridge system west of New Caledonia (southwest Pacific) from wide‐angle and reflection seismic data , 2007 .

[82]  T. Kleine,et al.  Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian-Pacific mantle boundary in the SW Pacific , 2007 .

[83]  A. Crawford,et al.  Arc-continent collision forming a large island between New Caledonia and New Zealand in the Oligocene. , 2006 .

[84]  C. Heine,et al.  Kenn Plateau off northeast Australia: a continental fragment in the southwest Pacific jigsaw , 2006 .

[85]  M. Lanphere,et al.  Argon geochronology of Kilauea's early submarine history , 2006 .

[86]  J. Mattinson Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages , 2005 .

[87]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[88]  N. Mortimer Basement gabbro from the Lord Howe Rise , 2004 .

[89]  M. Thirlwall,et al.  Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios , 2004 .

[90]  I. Franchi,et al.  Further Characterisation of the 91500 Zircon Crystal , 2004 .

[91]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[92]  T. Spell,et al.  Characterization and calibration of 40Ar/39Ar dating standards , 2003 .

[93]  C. German,et al.  Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections , 2002 .

[94]  S. Bryan,et al.  The Whitsunday Volcanic Province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province , 2000 .

[95]  R. Sutherland Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data , 1999 .

[96]  N. Mortimer,et al.  Overview of the Median Batholith, New Zealand: a new interpretation of the geology of the Median Tectonic Zone and adjacent rocks , 1999 .

[97]  R. Müller,et al.  Evolution of the Louisiade triple junction , 1999 .

[98]  G. Eby,et al.  Geochronology and geochemistry of a Mesozoic magmatic arc system, Fiordland, New Zealand , 1998, Journal of the Geological Society.

[99]  N. Mortimer,et al.  Basement geology from Three Kings Ridge to West Norfolk Ridge, southwest Pacific Ocean: evidence from petrology, geochemistry and isotopic dating of dredge samples , 1998 .

[100]  J. Royer,et al.  The tectonic history of the Tasman Sea: A puzzle with 13 pieces , 1998 .

[101]  G. Gibson,et al.  SHRIMP monazite and zircon geochronology of high‐grade metamorphism in New Zealand , 1998 .

[102]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[103]  R. Trumbull,et al.  An evaluation of the Rb vs. (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks , 1997 .

[104]  N. Mortimer,et al.  Basement geology of Taranaki and Wanganui Basins, New Zealand , 1997 .

[105]  G. Eby,et al.  The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere , 1995, Journal of the Geological Society.

[106]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[107]  Malcolm Sambridge,et al.  Mixture modeling of multi-component data sets with application to ion-probe zircon ages , 1994 .

[108]  M. McCulloch,et al.  Dampier Ridge, Tasman Sea, as a stranded continental fragment∗ , 1994 .

[109]  R. Cooper,et al.  Early Palaeozoic terranes in New Zealand and their relationship to the Lachlan Fold Belt , 1992 .

[110]  H. Roeser,et al.  Marine magnetic anomalies over the Lord Howe Rise and the Tasman Sea: Implications for the magnetization of the lower continental crust , 1992 .

[111]  E. Middlemost,et al.  A classification of igneous rocks and glossary of terms , 1991 .

[112]  R. Wood,et al.  Carboniferous granite basement dredged from a site on the southwest margin of the Challenger Plateau, Tasman Sea , 1991 .

[113]  B. Roser,et al.  Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio , 1986, The Journal of Geology.

[114]  H. Frey Magsat and POGO magnetic anomalies over the Lord Howe Rise: Evidence against a simple continental crustal structure , 1985 .

[115]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[116]  P. Patchett,et al.  A routine high-precision method for Lu-Hf isotope geochemistry and chronology , 1981 .

[117]  P. Patchett,et al.  Hafnium isotope variations in oceanic basalts , 1980 .

[118]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[119]  G. Cowan,et al.  The variability of the natural abundance of 235U , 1976 .

[120]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[121]  J. Griffiths,et al.  Reconstruction of the South-West Pacific Margin of Gondwanaland , 1971, Nature.

[122]  B. Pelletier,et al.  Chapter 2 Geodynamics of the SW Pacific: a brief review and relations with New Caledonian geology , 2020, memoirs.

[123]  F. Hauff,et al.  Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia , 2010 .

[124]  M. Norvick,et al.  New Insights into the Evolution of the Lord Howe Rise (Capel and Faust Basins), Offshore Eastern Australia, from Terrane and Geophysical Data Analysis , 2008 .

[125]  J. Kennett,et al.  Site 587: Lansdowne Bank, Southwest Pacific , 1986 .