Concurrent Hierarchical Finite State Machines for Modeling Pedestrian Behavioral Tendencies

Abstract A detailed and realistic simulation of pedestrian behavior requires a precise modeling of human decision making processes regarding action prioritization and selection. This paper presents a novel strategic pedestrian decision making model based on concurrent hierarchical finite state machines. The model is capable to create goal directed behavioral tendencies, which are operational guardrails for tactical models. The decision model is inherently flexible and scalable, being adaptable to different application scenarios, behavioral demands and input parameters. The applicability of the model is shown by means of an example. Furthermore, we discuss a validation and calibration approach for the decision model.

[1]  Matthias Jüngel,et al.  XABSL - A Pragmatic Approach to Behavior Engineering , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2005, SCA '05.

[3]  R. Golledge Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes , 2010 .

[4]  Hyun Seung Yang,et al.  A collision avoidance behavior model for crowd simulation based on psychological findings , 2013, Comput. Animat. Virtual Worlds.

[5]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[6]  Gerta Köster,et al.  Natural discretization of pedestrian movement in continuous space. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Kevin O'Brien,et al.  Human Behavior Models for Agents in Simulators and Games: Part I: Enabling Science with PMFserv , 2006, Presence: Teleoperators & Virtual Environments.

[8]  Matthew N. Dailey,et al.  Multiple human tracking in high-density crowds , 2009, Image Vis. Comput..

[9]  F.E.H. Wijermans,et al.  Understanding crowd behaviour , 2011 .

[10]  Daniel Thalmann,et al.  A Cognitive Model for Human Behavior Simulation in EBDI Virtual Humans , 2010, ICAART.

[11]  Ulrich Weidmann,et al.  Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung , 1992 .

[12]  A. Elliot,et al.  Approach and Avoidance Motivation , 2001 .

[13]  Serge P. Hoogendoorn,et al.  Pedestrian route-choice and activity scheduling theory and models , 2004 .

[14]  N. Badler,et al.  Crowd simulation incorporating agent psychological models, roles and communication , 2005 .

[15]  Yeong-gwang Oh,et al.  Agent-based simulation of affordance-based human behaviors in emergency evacuation , 2013, Simul. Model. Pract. Theory.

[16]  F.E.H. Wijermans,et al.  Understanding crowd behaviour: simulating situated individuals , 2011 .

[17]  Ivar Jacobson,et al.  Unified Modeling Language Reference Manual, The (2nd Edition) , 2004 .

[18]  Samarjit Chakraborty,et al.  Towards multi-layer pedestrian interaction models for simulation, tracking, interpretation and indoor navigation , 2011 .

[19]  Matthew N. Dailey,et al.  Multiple human tracking in high-density crowds , 2012, Image Vis. Comput..

[20]  Mark H. Overmars,et al.  The corridor map method: a general framework for real‐time high‐quality path planning , 2007, Comput. Animat. Virtual Worlds.

[21]  Ivan Laptev,et al.  Density-aware person detection and tracking in crowds , 2011, ICCV.

[22]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[23]  André Borrmann,et al.  Graph-based approaches for simulating pedestrian dynamics in building models , 2010 .

[24]  Max Risler,et al.  Behavior control for single and multiple autonomous agents based on hierarchical finite state machines , 2010 .

[25]  Tang Ming,et al.  Pedestrian Agent Navigation Approach in Virtual Passenger Transfer Hub , 2010, 2010 WASE International Conference on Information Engineering.

[26]  Ivar Jacobson,et al.  The unified modeling language reference manual , 2010 .

[27]  Álvaro Ramírez-Gómez,et al.  Simulation of counterflow pedestrian dynamics using spheropolygons. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  A. Elliot The Hierarchical Model of Approach-Avoidance Motivation , 2006 .

[29]  Christopher E. Peters,et al.  Modeling Groups of Plausible Virtual Pedestrians , 2009, IEEE Computer Graphics and Applications.

[30]  T. Vicsek,et al.  Simulation of pedestrian crowds in normal and evacuation situations , 2002 .

[31]  Dirk Hartmann,et al.  Adaptive pedestrian dynamics based on geodesics , 2010 .