The Structure of Borel Equivalence Relations in Polish Spaces

[1]  Alexander S. Kechris Amenable Equivalence Relations and Turing Degrees , 1991, J. Symb. Log..

[2]  Alain Louveau,et al.  On the Quasi-Ordering of Borel Linear Orders under Embeddability , 1990, J. Symb. Log..

[3]  Ralf Spatzier,et al.  KAZHDAN GROUPS, COCYCLES AND TREES , 1990 .

[4]  Scot Adams,et al.  Trees and amenable equivalence relations , 1990, Ergodic Theory and Dynamical Systems.

[5]  Alain Louveau,et al.  A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .

[6]  Alain Louveau Two Results on Borel Orders , 1989, J. Symb. Log..

[7]  Harvey M. Friedman,et al.  A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.

[8]  Matthew Foreman A Dilworth Decomposition Theorem for λ Suslin Quasi-Orderings of R , 1989 .

[9]  Indecomposability of treed equivalence relations , 1988 .

[10]  P. Muhly,et al.  Coordinates for triangular operator algebras , 1988 .

[11]  John R. Steel,et al.  Cabal Seminar 81–85 , 1988 .

[12]  Theodore A. Slaman,et al.  Definable functions on degrees , 1988 .

[13]  S. Ulam,et al.  Mathematical problems and games , 1987 .

[14]  D. Sullivan,et al.  Generic dynamics and monotone complete C*-algebras , 1986 .

[15]  G. Godefroy Some remarks on Suslin sections , 1986 .

[16]  Stan Wagon,et al.  The Banach-Tarski paradox , 1985 .

[17]  S. Shelah,et al.  Measurable recurrence and quasi-invariant measures , 1982 .

[18]  Benjamin Weiss,et al.  An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.

[19]  L. F. McAuley,et al.  General topology and modern analysis , 1981 .

[20]  J. Silver,et al.  Counting the number of equivalence classes of Borel and coanalytic equivalence relations , 1980 .

[21]  John P. Burgess A selection theorem for group actions. , 1979 .

[22]  L. Harrington,et al.  Equivalence Relations, Projective and Beyond , 1979 .

[23]  Calvin C. Moore,et al.  Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .

[24]  R. Zimmer Hyperfinite factors and amenable ergodic actions , 1977 .

[25]  Wolfgang Krieger On Borel automorphisms and their quasi-invariant measures , 1976 .

[26]  J. Feldman,et al.  Ergodic equivalence relations, cohomology, and von Neumann algebras , 1975 .

[27]  Y. Katznelson,et al.  The construction of quasi-invariant measures , 1972 .

[28]  Edward G. Effros,et al.  Transformation Groups and C ∗ -algebras , 1965 .

[29]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[30]  J. Glimm,et al.  LOCALLY COMPACT TRANSFORMATION GROUPS( , 1961 .