Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica

Abstract. We use 24 years (1992–2016) of high-quality meteorological observations at Neumayer Station, East Antarctica, to force a surface energy balance model. The modelled 24-year cumulative surface melt at Neumayer amounts to 1154 mm water equivalent (w.e.), with only a small uncertainty (±3 mm w.e.) from random measurement errors. Results are more sensitive to the chosen value for the surface momentum roughness length and new snow density, yielding a range of 900–1220 mm w.e. Melt at Neumayer occurs only in the months November to February, with a summer average of 50 mm w.e. and large interannual variability (σ=42 mm w.e.). This is a small value compared to an annual average (1992–2016) accumulation of 415±86 mm w.e. Absorbed shortwave radiation is the dominant driver of temporal melt variability at Neumayer. To assess the importance of the snowmelt–albedo feedback we include and calibrate an albedo parameterisation in the surface energy balance model. We show that, without the snowmelt–albedo feedback, surface melt at Neumayer would be approximately 3 times weaker, demonstrating how important it is to correctly represent this feedback in model simulations of surface melt in Antarctica.

[1]  Roderik S. W. van de Wal,et al.  Surface radiation balance in Antarctica as measured with automatic weather stations , 2004 .

[2]  Robin E. Bell,et al.  Widespread movement of meltwater onto and across Antarctic ice shelves , 2017, Nature.

[3]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[4]  M. R. van den Broeke,et al.  Dynamic thinning of glaciers on the Southern Antarctic Peninsula , 2015, Science.

[5]  H. Loon The Half-Yearly Oscillations in Middle and High Southern Latitudes and the Coreless Winter , 1967 .

[6]  A. Hall,et al.  What Controls the Strength of Snow-Albedo Feedback? , 2007 .

[7]  J. Box,et al.  Darkening of the Greenland ice sheet due to the melt-albedo feedback observed at PROMICE weather stations , 1969 .

[8]  S. Lhermitte,et al.  Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016) , 2017 .

[9]  J. Oerlemans,et al.  The annual cycle of meteorological variables and the surface energy balance on Berkner Island, Antarctica , 1999, Annals of Glaciology.

[10]  J. Oerlemans,et al.  Temporal and spatial variability of the surface energy balance in Dronning Maud Land, East Antarctica , 2002 .

[11]  S. Warren,et al.  Solar-heating rates and temperature profiles in Antarctic snow and ice , 1993, Journal of Glaciology.

[12]  The Imbie Team Mass balance of the Antarctic Ice Sheet from 1992 to 2017 , 2018 .

[13]  M. R. van den Broeke,et al.  Assessing the retrieval of cloud properties from radiation measurements over snow and ice , 2011 .

[14]  Eric Rignot,et al.  Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf , 2004 .

[15]  S. Morin,et al.  Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau , 2015 .

[16]  Donald K. Perovich,et al.  Seasonal evolution of the albedo of multiyear Arctic sea ice , 2002 .

[17]  M. Tedesco Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperature (1979-2008) , 2009 .

[18]  M. R. van den Broeke,et al.  Firn air depletion as a precursor of Antarctic ice-shelf collapse , 2014, Journal of Glaciology.

[19]  M. R. van den Broeke,et al.  Daily cycle of the surface energy balance in Antarctica and the influence of clouds , 2006 .

[20]  M. R. van den Broeke,et al.  The K-transect in west Greenland: Automatic weather station data (1993–2016) , 2018 .

[21]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[22]  A. Holtslag,et al.  Applied Modeling of the Nighttime Surface Energy Balance over Land , 1988 .

[23]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[24]  A. Dyer A review of flux-profile relationships , 1974 .

[25]  X. Fettweis,et al.  Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers , 2012 .

[26]  R. DeConto,et al.  Contribution of Antarctica to past and future sea-level rise , 2016, Nature.

[27]  M. Fily,et al.  Surface melting derived from microwave radiometers: a climatic indicator in Antarctica , 2007, Annals of Glaciology.

[28]  T. Scambos,et al.  Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica , 2004 .

[29]  M. Flanner,et al.  A new albedo parameterization for use in climate models over the Antarctic ice sheet , 2011 .

[30]  Laurent Arnaud,et al.  Inhibition of the positive snow-albedo feedback by precipitation in interior Antarctica , 2012 .

[31]  T. Schlatter The Local Surface Energy Balance and Subsurface Temperature Regime in Antarctica , 1972 .

[32]  Luke G. Bennetts,et al.  Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell , 2018, Nature.

[33]  Karen E. Frey,et al.  Satellite‐based estimates of Antarctic surface meltwater fluxes , 2013 .

[34]  Anna E. Hogg,et al.  Impacts of the Larsen-C Ice Shelf calving event , 2017 .

[35]  G. König‐Langlo Roughness Length of an Antarctic Ice Shelf , 1985 .

[36]  Peter Jansson,et al.  Internal accumulation in firn and its significance for the mass balance of Storglaciären, Sweden , 2004, Journal of Glaciology.

[37]  E. Martin,et al.  An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecasting , 1989, Journal of Glaciology.

[38]  J. King,et al.  Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula , 2011 .

[39]  Laurent Arnaud,et al.  Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series , 2016 .

[40]  Konrad Steffen,et al.  The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland , 2009 .

[41]  G. Marshall,et al.  Mass balance of the Antarctic ice sheet , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Karen E. Frey,et al.  Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios , 2015 .

[43]  M. R. van den Broeke,et al.  Temporal and Spatial Variations of the Aerodynamic Roughness Length in the Ablation Zone of the Greenland Ice Sheet , 2008 .

[44]  S. Palm,et al.  Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation , 2012 .

[45]  Charles S. Zender,et al.  Linking snowpack microphysics and albedo evolution , 2006 .

[46]  Philip J. Rasch,et al.  Present-day climate forcing and response from black carbon in snow , 2006 .

[47]  J. Turner,et al.  Atmosphere‐ocean‐ice interactions in the Amundsen Sea Embayment, West Antarctica , 2017 .

[48]  Frank Pattyn,et al.  Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf , 2017 .

[49]  A. Luckman,et al.  Intense Winter Surface Melt on an Antarctic Ice Shelf , 2018 .

[50]  Edgar L. Andreas,et al.  A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice , 1987 .

[51]  M. R. van den Broeke,et al.  An improved semi-empirical model for the densification of Antarctic firn , 2011 .

[52]  G. König‐Langlo,et al.  Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica , 2009, Antarctic Science.

[53]  Won Sang Lee,et al.  Antarctic ice shelf potentially stabilized by export of meltwater in surface river , 2017, Nature.

[54]  M. R. van den Broeke,et al.  Seasonal cycles of Antarctic surface energy balance from automatic weather stations , 2005, Annals of Glaciology.

[55]  M. Broeke The semi-annual oscillation and Antarctic climate. Part 1: influence on near surface temperatures (1957–79) , 1998, Antarctic Science.

[56]  M. R. van den Broeke,et al.  Present and future variations in Antarctic firn air content , 2014 .

[57]  C. Genthon,et al.  Seasonal Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal East Antarctica , 2017, Boundary-Layer Meteorology.

[58]  J. Herman,et al.  A net decrease in the Earth's cloud, aerosol, and surface 340 nm reflectivity during the past 33 yr (1979–2011) , 2013 .

[59]  A. Hall The role of surface albedo feedback in climate , 2004 .

[60]  Eric Rignot,et al.  Mass balance of the Antarctic Ice Sheet from 1992 to 2017 , 2018, Nature.

[61]  N. Barrand,et al.  Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds , 2014, Antarctic Science.

[62]  A. Gardner,et al.  A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization , 2010 .