A Hadamard fractioal total variation-Gaussian (HFTG) prior for Bayesian inverse problems

This paper studies the infinite-dimensional Bayesian inference method with Hadamard fractional total variation-Gaussian (HFTG) prior for solving inverse problems. First, Hadamard fractional Sobolev space is established and proved to be a separable Banach space under some mild conditions. Afterwards, the HFTG prior is constructed in this separable fractional space, and the proposed novel hybrid prior not only captures the texture details of the region and avoids step effects, but also provides a complete theoretical analysis in the infinite dimensional Bayesian inversion. Based on the HFTG prior, the well-posedness and finite-dimensional approximation of the posterior measure of the Bayesian inverse problem are given, and samples are extracted from the posterior distribution using the standard pCN algorithm. Finally, numerical results under different models indicate that the Bayesian inference method with HFTG prior is effective and accurate. keywords: Bayesian inference; Hadamard fractional total variation; hybrid prior; pCN algorithm

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Chu-Li Fu,et al.  A computational method for identifying a spacewise‐dependent heat source , 2010 .

[3]  J. Vanterler da C. Sousa,et al.  On the ψ-Hilfer fractional derivative , 2017, Commun. Nonlinear Sci. Numer. Simul..

[4]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[5]  Yong Chen,et al.  An accelerated Kaczmarz type method for nonlinear inverse problems in Banach spaces with uniformly convex penalty , 2021, J. Comput. Appl. Math..

[6]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[7]  S. Siltanen,et al.  Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .

[8]  Y. Zhang,et al.  A Class of Fractional-Order Variational Image Inpainting Models , 2012 .

[9]  Ke Chen,et al.  A Total Fractional-Order Variation Model for Image Restoration with Nonhomogeneous Boundary Conditions and Its Numerical Solution , 2015, SIAM J. Imaging Sci..

[10]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[11]  D. Idczak,et al.  Fractional Sobolev Spaces via Riemann-Liouville Derivatives , 2013 .

[12]  Ricardo Almeida,et al.  A Caputo fractional derivative of a function with respect to another function , 2016, Commun. Nonlinear Sci. Numer. Simul..

[13]  Wenjuan Yao,et al.  A Total Fractional-Order Variation Model for Image Super-Resolution and Its SAV Algorithm , 2020, J. Sci. Comput..

[14]  Dingyu Xue,et al.  Fractional-Order Total Variation Image Restoration Based on Primal-Dual Algorithm , 2013 .

[15]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[16]  Bryan M. Williams,et al.  A new image deconvolution method with fractional regularisation , 2016 .

[17]  Ke Chen,et al.  Variational image registration by a total fractional-order variation model , 2015, J. Comput. Phys..

[18]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[19]  Nicholas Zabaras,et al.  A Bayesian inference approach to the inverse heat conduction problem , 2004 .

[20]  Chuanjiang He,et al.  Fractional order total variation regularization for image super-resolution , 2013, Signal Process..

[21]  Qingping Zhou,et al.  Nonlocal TV-Gaussian prior for Bayesian inverse problems with applications to limited CT reconstruction , 2020, Inverse Problems & Imaging.

[22]  R. Chan,et al.  Truncated Fractional-Order Total Variation Model for Image Restoration , 2019, Journal of the Operations Research Society of China.

[23]  Juan Morales-Sánchez,et al.  Fractional Regularization Term for Variational Image Registration , 2009 .

[24]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[25]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[26]  A. Stuart,et al.  MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.

[27]  Luoyu Zhou,et al.  Fraction-order total variation blind image restoration based on L1-norm , 2017 .

[28]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[29]  T. Abdeljawad,et al.  Generalized fractional derivatives and Laplace transform , 2020, Discrete & Continuous Dynamical Systems - S.

[30]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[31]  Zhang Jun,et al.  A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising , 2011 .

[32]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[33]  Om P. Agrawal,et al.  Fractional variational calculus in terms of Riesz fractional derivatives , 2007 .

[34]  M. Jleli,et al.  Hartman-Wintner-Type Inequality for a Fractional Boundary Value Problem via a Fractional Derivative with respect to Another Function , 2017 .

[35]  Zhewei Yao,et al.  A TV-Gaussian prior for infinite-dimensional Bayesian inverse problems and its numerical implementations , 2015, 1510.05239.

[36]  T. Bui-Thanh,et al.  FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems , 2016 .

[37]  Dariusz Idczak,et al.  Fractional fundamental lemma and fractional integration by parts formula -- Applications to critical points of Bolza functionals and to linear boundary value problems , 2014 .