Quantum mechanical effects for a hydrogen atom confined in a dielectric spherical microcavity

[1]  V. Prasad,et al.  Shannon‐information entropy sum in the confined hydrogenic atom , 2020 .

[2]  J. Garza,et al.  Shannon Entropy for the Hydrogen Atom Confined by Four Different Potentials , 2019, Quantum Reports.

[3]  E. L. Koo Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings , 2018 .

[4]  R. A. Rojas,et al.  The confined hydrogen atom: a linear variational approach , 2015 .

[5]  N. Aquino,et al.  Shannon and Fisher entropies for a hydrogen atom under soft spherical confinement , 2013 .

[6]  Nigel S Scrutton,et al.  Good vibrations in enzyme-catalysed reactions. , 2012, Nature chemistry.

[7]  S. A. Cruz,et al.  The hydrogen molecule inside prolate spheroidal boxes: full nuclear position optimization , 2010 .

[8]  A. Douglas Stone,et al.  Nonlinear dynamics: Chaotic billiard lasers , 2010, Nature.

[9]  S. A. Cruz,et al.  Spheroidal confinement of a single electron and of the hydrogen atom, the H 2+ and HeH++ molecular ions with arbitrary nuclear positions along the major axis , 2009 .

[10]  S. Chu,et al.  A highly accurate study of a helium atom under pressure , 2009 .

[11]  K. Sen,et al.  Exact Relations for Confined One-Electron Systems , 2009 .

[12]  Sylvio Canuto,et al.  Spectroscopy of Confined Atomic Systems: Effect of Plasma , 2009 .

[13]  G. Campoy,et al.  Highly accurate solutions for the confined hydrogen atom , 2007 .

[14]  S. Schwartz,et al.  How enzyme dynamics helps catalyze a reaction in atomic detail: a transition path sampling study. , 2005, Journal of the American Chemical Society.

[15]  S. Manson,et al.  Structure and photoionization of confined atoms , 2004 .

[16]  N. Davidson,et al.  Stable islands in chaotic atom-optics billiards, caused by curved trajectories , 2002 .

[17]  Nir Davidson,et al.  Dark optical traps for cold atoms , 2002 .

[18]  N. Davidson,et al.  Observation of islands of stability in soft wall atom-optics billiards. , 2001, Physical review letters.

[19]  G. Diercksen,et al.  Quantum chemistry of confined systems: structure and vibronic spectra of a confined hydrogen molecule , 2001 .

[20]  M. Raizen,et al.  Optical billiards for atoms. , 2001, Physical review letters.

[21]  D. Delande,et al.  Ab initio calculation of the J = 0 and J = 1 states of the H2+, D2+ and HD+ molecular ions , 2000 .

[22]  W. Jaskólski Confined many-electron systems , 1996 .

[23]  A. N. Aquino Accurate energy eigenvalues for enclosed hydrogen atom within spherical impenetrable boxes , 1995 .

[24]  Mei,et al.  Hydrogenic impurity states in quantum dots and quantum wires. , 1992, Physical review. B, Condensed matter.

[25]  Balakrishnan,et al.  Dissociation energy of the hydrogen molecule. , 1992, Physical review letters.

[26]  R. A. Logan,et al.  Toward quantum well wires: Fabrication and optical properties , 1982 .

[27]  Hiroyuki Sakaki,et al.  Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures , 1980 .

[28]  J. A. Weil,et al.  On the hyperfine splitting of the hydrogen atom in a spherical box , 1976 .

[29]  A. Sommerfeld,et al.  Künstliche Grenzbedingungen beim Keplerproblem , 1938 .

[30]  J. D. Boer,et al.  Remarks concerning molecural interaction and their influence on the polarisability , 1937 .