Photonic two-qubit parity gate with tiny cross–Kerr nonlinearity

The cross-Kerr nonlinearity (XKNL) effect can induce efficient photon interactions in principle with which photonic multiqubit gates can be performed using far fewer physical resources than linear optical schemes. Unfortunately, it is extremely challenging to generate giant cross-Kerr nonlinearities. In recent years much effort has been made to perform multiqubit gates via weak XKNLs. However, the required nonlinearity strengths are still difficult to achieve in an experiment. We here propose an XKNL-based scheme for realizing a two-photon polarization-parity gate, a universal two-qubit gate, in which the required strength of the nonlinearity could be orders of magnitude weaker than those required for previous schemes. The scheme utilizes a ring cavity fed by a coherent state as a quantum information bus which interacts with a path mode of the two polarized photons (qubits). The XKNL effect makes the bus pick up a phase shift dependent on the photon number of the path mode. Even when the potential phase shifts are very small they can be effectively measured using photon-number resolving detectors, which accounts for the fact that our scheme can work in the regime of tiny XKNL. The measurement outcome reveals the parity (even parity or odd parity) of the two polarization qubits.

[1]  Masahiro Takeoka,et al.  Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector , 2010, 1002.0232.

[2]  Christoph Simon,et al.  Cross-Kerr nonlinearity between continuous-mode coherent states and single photons , 2011, 1102.3724.

[3]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.

[4]  Jian-Wei Pan,et al.  Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion , 2011 .

[5]  C. Gerry,et al.  State-projective scheme for generating pair coherent states in traveling-wave optical fields , 2011 .

[6]  Hoonsoo Kang,et al.  Observation of large Kerr nonlinearity at low light intensities. , 2003, Physical review letters.

[7]  Aaron J. Miller,et al.  Noise-free high-efficiency photon-number-resolving detectors , 2005, quant-ph/0506175.

[8]  F. Illuminati,et al.  Multiphoton quantum optics and quantum state engineering , 2006, quant-ph/0701050.

[9]  Jian Li,et al.  Quantum control gates with weak cross-Kerr nonlinearity , 2008, 0811.3364.

[10]  Jonathan P. Dowling,et al.  Maximal success probabilities of linear-optical quantum gates , 2008, 0808.1926.

[11]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[12]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[13]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[14]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[15]  Natalia Korolkova,et al.  Effective cross-Kerr Hamiltonian for a nonresonant four-level atom , 2008 .

[16]  C. Gerry,et al.  Nonlocal entanglement of coherent states, complementarity, and quantum erasure , 2007 .

[17]  Hyunseok Jeong Quantum computation using weak nonlinearities: Robustness against decoherence , 2006 .

[18]  M. Lukin,et al.  Controlling photons using electromagnetically induced transparency , 2001, Nature.

[19]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[20]  M. Paris Input–output relations for multiport ring cavities , 2007, quant-ph/0701078.

[21]  G. D’Ariano,et al.  Optical Fock-state synthesizer , 2000, quant-ph/0001065.

[22]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[23]  O. Hirota,et al.  Entangled coherent states: Teleportation and decoherence , 2001 .

[24]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[25]  D.-G. Welsch,et al.  Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency , 2001 .

[26]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[27]  Cirac,et al.  Entanglement purification of gaussian continuous variable quantum states , 2000, Physical review letters.

[28]  Kae Nemoto,et al.  Loss in hybrid qubit-bus couplings and gates , 2008, 0804.3240.

[29]  Vitali,et al.  Complete quantum teleportation with a kerr nonlinearity , 2000, Physical review letters.

[30]  L. Kuang,et al.  Large cross-phase shifts among three slow weak pulses via triple electromagnetically induced transparency , 2011 .

[31]  C. Xie,et al.  Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system. , 2008, Physical review letters.

[32]  Ryosuke Shimizu,et al.  Observation of optical-fibre Kerr nonlinearity at the single-photon level , 2009 .

[33]  R. Ionicioiu Entangling spins by measuring charge : A parity-gate toolbox , 2006, quant-ph/0609118.

[34]  M. Xiao,et al.  Phase gate with a four-level inverted-Y system (5 pages) , 2005 .

[35]  Yong-Fan Chen,et al.  Low-light-level cross-phase modulation by quantum interference , 2010 .

[36]  J Eisert Optimizing linear optics quantum gates. , 2005, Physical review letters.

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  William J. Munro,et al.  Generalized parity measurements , 2008, 0806.0982.

[39]  Jonathan P. Dowling,et al.  Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements , 2002 .

[40]  S. Kilin,et al.  Optical qudit-type entanglement creation at long distances by means of small cross-Kerr nonlinearities , 2011, 1202.1710.

[41]  G. J. Milburn,et al.  Quantum-information processing via a lossy bus , 2006, quant-ph/0607206.

[42]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[43]  Qi Guo,et al.  Simplified optical quantum-information processing via weak cross-Kerr nonlinearities , 2011 .

[44]  G. Milburn,et al.  Nonlinear quantum optical computing via measurement , 2004, quant-ph/0409198.

[45]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[46]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[47]  Simon J. Devitt,et al.  Photonic module: An on-demand resource for photonic entanglement , 2007, 0706.2226.

[48]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[49]  Pieter Kok,et al.  Effects of self-phase-modulation on weak nonlinear optical quantum gates , 2007, 0710.1810.

[50]  J. F. Dynes,et al.  Efficient photon number detection with silicon avalanche photodiodes , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[51]  Robert L. Cook,et al.  Optical coherent state discrimination using a closed-loop quantum measurement , 2007, Nature.

[52]  Jian-Wei Pan,et al.  Generation of entangled coherent states for distant Bose-Einstein condensates via electromagnetically induced transparency , 2007, 0903.1210.

[53]  S. Gong,et al.  Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling , 2009 .

[54]  Bing He,et al.  Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity , 2009, 0901.3505.

[55]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[56]  Masahiro Takeoka,et al.  Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector. , 2009, Physical review letters.

[57]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[58]  Kae Nemoto,et al.  Weak nonlinearities and cluster states , 2007, 0704.1931.

[59]  Andrew G. Glen,et al.  APPL , 2001 .

[60]  Alexei Gilchrist,et al.  Fault tolerance in parity-state linear optical quantum computing , 2010 .

[61]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.