Tuning the multivariate Poisson mixture model for clustering supermarket shoppers
暂无分享,去创建一个
Tom Brijs | Koen Vanhoof | Dimitris Karlis | Gilbert Swinnen | Geert Wets | D. Karlis | K. Vanhoof | T. Brijs | G. Swinnen | G. Wets
[1] N. L. Johnson,et al. Discrete Multivariate Distributions , 1998 .
[2] S. Kocherlakota,et al. Bivariate discrete distributions , 1992 .
[3] William DuMouchel,et al. Empirical bayes screening for multi-item associations , 2001, KDD '01.
[4] Heikki Mannila,et al. Probabilistic modeling of transaction data with applications to profiling, visualization, and prediction , 2001, KDD '01.
[5] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[6] D. N. Geary. Mixture Models: Inference and Applications to Clustering , 1989 .
[7] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[8] D. Karlis. An EM algorithm for multivariate Poisson distribution and related models , 2003 .
[9] Heikki Mannila,et al. Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.
[10] Kazuhiko Kano,et al. On recurrence relations for the probability function of multivariate generalized Poisson distribution , 1991 .
[11] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[12] Marcel Corstjens,et al. Store Wars: The Battle for Mindspace and Shelfspace , 1995 .
[13] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[14] Jye-Chyi Lu,et al. Multivariate zero-inflated Poisson models and their applications , 1999 .
[15] A. Agresti. An introduction to categorical data analysis , 1997 .
[16] Dankmar Böhning,et al. Computer-Assisted Analysis of Mixtures and Applications: Meta-Analysis, Disease Mapping, and Others , 1999 .
[17] M. Wedel,et al. Market Segmentation: Conceptual and Methodological Foundations , 1997 .
[18] Norberto F. Ezquerra,et al. A fast algorithm to cluster high dimensional basket data , 2001, Proceedings 2001 IEEE International Conference on Data Mining.