Modeling of carbon dioxide absorption/stripping by aqueous methyldiethanolamine/piperazine

[1]  Umberto Desideri,et al.  Performance modelling of a carbon dioxide removal system for power plants , 1999 .

[2]  P. Tremaine,et al.  Thermodynamics of aqueous amines: excess molar heat capacities, volumes, and expansibilities of {water + methyldiethanolamine (MDEA)} and {water + 2-amino-2-methyl-1-propanol (AMP)} , 2002 .

[3]  M. Abu-Arabi,et al.  Physical solubility and diffusivity of CO2 in aqueous diethanolamine solutions , 2001 .

[4]  E. S. Hamborg,et al.  Densities, Viscosities, and Liquid Diffusivities in Aqueous Piperazine and Aqueous (Piperazine + N-Methyldiethanolamine) Solutions , 2008 .

[5]  Gary T. Rochelle,et al.  Integrating MEA Regeneration with CO2 Compression and Peaking to Reduce CO2 Capture Costs , 2005 .

[6]  G. Versteeg,et al.  CO2 capture from power plants. Part I: A parametric study of the technical performance based on monoethanolamine , 2007 .

[7]  A. E. Mather,et al.  The solubility of carbon dioxide and hydrogen sulfide in a 35 wt% aqueous solution of methyldiethanolamine , 1993 .

[8]  Xi Chen,et al.  Carbon dioxide thermodynamics, kinetics, and mass transfer in aqueous piperazine derivatives and other amines , 2011 .

[9]  Van Wagener,et al.  Stripper modeling for CO₂ removal using monoethanolamine and piperazine solvents , 2011 .

[10]  R. Dugas,et al.  Carbon dioxide absorption, desorption, and diffusion in aqueous piperazine and monoethanolamine , 2009 .

[11]  John Timothy Cullinane Thermodynamics and kinetics of aqueous piperazine with potassium carbonate for carbon dioxide absorption , 2005 .

[12]  L. Hepler,et al.  Viscosity of aqueous solutions of n-methyldiethanolamine and of diethanolamine , 1994 .

[13]  Gary T. Rochelle,et al.  Absorber intercooling in co2 absorption by piperazine-promoted potassium carbonate , 2009 .

[14]  S. Freeman,et al.  Thermal degradation and oxidation of aqueous piperazine for carbon dioxide capture , 2011 .

[15]  Finn Andrew Tobiesen,et al.  Modeling of Blast Furnace CO 2 Capture Using Amine Absorbents , 2007 .

[16]  Marcus Hilliard,et al.  A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas , 2008 .

[17]  Guo-Wen Xu,et al.  Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine , 1992 .

[18]  Q. Guo,et al.  Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer , 2006 .

[19]  Gary T. Rochelle,et al.  Volatility of aqueous amines in CO2 capture , 2011 .

[20]  G. Maurer,et al.  Chemical equilibrium constants for the formation of carbamates in (carbon dioxide + piperazine + water) from -NMR-spectroscopy , 2003 .

[21]  Meng-Hui Li,et al.  Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine+water , 2000 .

[22]  G. L. Shires,et al.  Process Heat Transfer , 1994 .

[23]  J. Plaza,et al.  Modeling of carbon dioxide absorption using aqueous monoethanolamine, piperazine and promoted potassium carbonate , 2012 .

[24]  G. Maurer,et al.  Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine: Prediction and correlation , 2011 .

[25]  Gary T. Rochelle,et al.  Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success , 2007 .

[26]  R. E. Tsai Mass transfer area of structured packing , 2010 .

[27]  S. Bandyopadhyay,et al.  Physical Solubility and Diffusivity of N2O and CO2 in Aqueous Solutions of Piperazine and (N-Methyldiethanolamine + Piperazine) , 2007 .

[28]  Alan E. Mather,et al.  Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions , 1982 .

[29]  H. Kierzkowska‐Pawlak Enthalpies of Absorption and Solubility of CO2 in Aqueous Solutions of Methyldiethanolamine , 2007 .

[30]  Gary T. Rochelle,et al.  Modeling CO2 capture with aqueous monoethanolamine , 2009 .

[31]  Gary T. Rochelle,et al.  Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine , 2002 .

[32]  D. Wagener,et al.  Carbon dioxide capture with concentrated, aqueous piperazine , 2009 .

[33]  N. Lior,et al.  The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes , 2003 .

[34]  Hanne M. Kvamsdal,et al.  Maintaining a neutral water balance in a 450 MWe NGCC-CCS power system with post-combustion carbon dioxide capture aimed at offshore operation , 2010 .

[35]  Eric Croiset,et al.  Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method , 2005 .

[36]  Norbert Asprion,et al.  Nonequilibrium rate-based simulation of reactive systems : Simulation model, heat transfer, and influence of film discretization , 2006 .

[37]  Ralph H. Weiland,et al.  Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends , 1998 .

[38]  K. Lucas,et al.  Mathematische Modellierung des MDEA-Absorptionsprozesses , 2004 .

[39]  E. S. Hamborg,et al.  Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K , 2007 .

[40]  Ralph H. Weiland,et al.  Heat Capacity of Aqueous Monoethanolamine, Diethanolamine, N-Methyldiethanolamine, and N-Methyldiethanolamine-Based Blends with Carbon Dioxide , 1997 .

[41]  Nikolett Sipöcz,et al.  Integrated modelling and simulation of a 400 MW NGCC power plant with CO2 capture , 2011 .

[42]  G. Maurer,et al.  Solubility of Carbon Dioxide in Aqueous Solutions of N-Methyldiethanolamine in the Low Gas Loading Region , 2006 .

[43]  Ahmed Aboudheir,et al.  1D and 2D absorption-rate/kinetic modeling and simulation of carbon dioxide absorption into mixed aqueous solutions of MDEA and PZ in a laminar jet apparatus , 2010 .

[44]  Chau-Chyun Chen,et al.  New mass-transfer correlations for packed towers , 2012 .

[45]  G. Iglesias-Silva,et al.  Densities and Excess Molar Volumes of Aqueous Solutions of n-Methyldiethanolamine (MDEA) at Temperatures from (283.15 to 363.15) K , 2003 .

[46]  Babatunde A. Oyenekan,et al.  Modeling of strippers for CO2 capture by aqueous amines , 2007 .

[47]  Wu Yong-hai Integrated Modeling and Simulation of Soldier Fire System , 2009 .

[48]  C. Wilke,et al.  Correlation of diffusion coefficients in dilute solutions , 1955 .

[49]  R. A. Robinson,et al.  Dissociation constants of piperazinium ion and related thermodynamic quantities from 0 to 50.deg. , 1968 .

[50]  Gary T. Rochelle,et al.  Amine volatility in CO2 capture , 2010 .