An improved measurement of the flux distribution of the Lyα forest in QSO absorption spectra: the effect of continuum fitting, metal contamination and noise properties

We have performed an extensive Voigt profile analysis of the neutral hydrogen (H i) and metal absorption present in a sample of 18 high-resolution, high signal-to-noise ratio quasi-stellar object (QSO) spectra observed with the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph. We use this analysis to separate the metal contribution from the H absorption and present an improved measurement of the flux probability distribution function (PDF) due to H i absorption alone at (z) = 2.07,2.52 and 2.94. The flux PDF is sensitive to the continuum fit in the normalized flux range 0.8 < F < 1.0 and to metal absorption at 0.2 < F < 0.8. Our new measurements of the flux PDF due to H i absorption alone are systematically lower at 0.2 < F < 0.8 by up to 30 per cent compared to the widely used measurement of McDonald et al., based on a significantly smaller sample of Keck High Resolution Echelle Spectrometer data. This discrepancy is probably due to a combination of our improved removal of the metal absorption and cosmic variance, since variations in the flux PDF between different lines-of-sight are large. The H effective optical depth τ eff Ht at 1.7 < z < 4 is best fit with a single power law, τ eff HI = (0.0023 ± 0.0007)(1 + z) 365±0.21 , in good agreement with previous measurements from comparable data. As also found previously, the effect of noise on the flux distribution is not significant in high-resolution, high signal-to-noise ratio data.

[1]  The Evolution of Optical Depth in the Lyα Forest: Evidence Against Reionization at z~6* , 2006, astro-ph/0607633.

[2]  The Evolution of Lyman-alpha Absorbers in the Redshift Range 0.5 < z < 1.9 , 2006, astro-ph/0608342.

[3]  R. Sheth,et al.  The probability distribution function of the Lyman α transmitted flux from a sample of Sloan Digital Sky Survey quasars , 2006, astro-ph/0608167.

[4]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[5]  W. Sargent,et al.  Tightening Constraints from the Lyα Forest with the Flux Probability Distribution Function , 2005, astro-ph/0505138.

[6]  The H I opacity of the intergalactic medium at redshifts 1.6 < z < 3.2 , 2005, astro-ph/0504391.

[7]  Wen-Ching,et al.  A concordance model of the Lyman α forest at z= 1.95 , 2004, astro-ph/0412557.

[8]  V. Desjacques,et al.  Joint modelling of the probability distribution function and power spectrum of the Lyα forest: comparison with observations at z= 3 , 2004, astro-ph/0410618.

[9]  N. Suzuki,et al.  Cosmological Parameters σ8, the Baryon Density Ωb, the Vacuum Energy Density ΩΛ, the Hubble Constant and the UV Background Intensity from a Calibrated Measurement of H I Lyα Absorption at z = 1.9 , 2004 .

[10]  The Lyman alpha forest opacity and the metagalactic hydrogen ionization rate at z~ 2-4 , 2004, astro-ph/0411072.

[11]  J. Brinkmann,et al.  The Lyα Forest Power Spectrum from the Sloan Digital Sky Survey , 2004, astro-ph/0405013.

[12]  M. Viel,et al.  Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra , 2004, astro-ph/0404600.

[13]  A. Songaila The Evolution of the Intergalactic Medium Transmission to Redshift 6 , 2004, astro-ph/0402347.

[14]  R. Baade,et al.  The associated system of HE 2347-4342 , 2004, astro-ph/0402336.

[15]  M. Viel,et al.  The effect of (strong) discrete absorption systems on the Lyman α forest flux power spectrum , 2003, astro-ph/0308078.

[16]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[17]  The power spectrum of the flux distribution in the Lyman α forest of a large sample of UVES QSO absorption spectra (LUQAS) , 2003, astro-ph/0308103.

[18]  R. Nichol,et al.  A Feature at z ∼ 3.2 in the Evolution of the Lyα Forest Optical Depth , 2002, astro-ph/0206293.

[19]  R. Carswell,et al.  The physical properties of the Lyα forest at z > 1.5 , 2002, astro-ph/0205237.

[20]  R. Carswell,et al.  The Enrichment History of the Intergalactic Medium: O VI in Lyα Forest Systems at Redshift z ~ 2 , 2002, astro-ph/0204370.

[21]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[22]  Hydrodynamical simulations of the Lyα forest: data comparisons , 2001, astro-ph/0102367.

[23]  R. Croft,et al.  Toward a Precise Measurement of Matter Clustering: Lyα Forest Data at Redshifts 2-4 , 2000, astro-ph/0012324.

[24]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[25]  S. Cristiani,et al.  High-Resolution Spectroscopy from 3050 to 10000 Å of the Hubble Deep Field South QSO J2233−606 with UVES at the ESO Very Large Telescope , 2000, astro-ph/0006128.

[26]  P. Mcdonald,et al.  The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyα Forest , 1999, astro-ph/9911196.

[27]  A. Banday,et al.  Evolution of large scale structure : from recombination to Garching : proceedings of the MPA-ESO Cosmology Conference : Garching, Germany, 2-7 August 1998 , 1999 .

[28]  R. Davé,et al.  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[29]  G. Bryan,et al.  Resolving the Lyα Forest , 1998, astro-ph/9805340.

[30]  A. Leonard,et al.  P3M‐SPH simulations of the Lyα forest , 1998, astro-ph/9805119.

[31]  R. Croft,et al.  Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyα Forest , 1997, astro-ph/9708018.

[32]  D. Kirkman,et al.  Intrinsic Properties of the ⟨z⟩ = 2.7 Lyα Forest from Keck Spectra of Quasar HS 1946+7658 , 1997, astro-ph/9701209.

[33]  M. Norman,et al.  Spectral Analysis of the Lyα Forest in a Cold Dark Matter Cosmology , 1996, astro-ph/9609194.

[34]  L. Hernquist,et al.  The Opacity of the Lyα Forest and Implications for Ωb and the Ionizing Background , 1996, astro-ph/9612245.

[35]  W. Sargent,et al.  The Lyα Forest at z ~ 4: Keck HIRES Observations of Q0000–26 , 1996 .

[36]  R. Cen,et al.  The Lyα Forest from Gravitational Collapse in the Cold Dark Matter + Λ Model , 1995, astro-ph/9511013.

[37]  L. Cowie,et al.  The Distribution of column densities and b values in the Lyman-alpha forest , 1995, astro-ph/9507047.

[38]  L. Cowie,et al.  The metallicity and internal structure of the Lyman-alpha forest clouds , 1995 .

[39]  E. I. Robson,et al.  Multifrequency observations of blazars. 5: Long-term millimeter, submillimeter, and infrared monitoring , 1994 .

[40]  R. Cen,et al.  Gravitational collapse of small scale structure as the origin of the Lyman alpha forest , 1994, astro-ph/9409017.

[41]  I. STATISTICAL ANALYSIS OF THE SSG QUASARS , 2022 .

[42]  D. Tytler,et al.  Systematic QSO Emission-Line Velocity Shifts and New Unbiased Redshifts , 1992 .

[43]  J. Ostriker,et al.  Lyman-alpha depression of the continuum from high-redshift quasars - A new technique applied in search of the Gunn-Peterson effect , 1991 .

[44]  J. Schachter OZONE ABSORPTION BANDS IN THE 3100A-3400A REGION , 1991 .

[45]  J. Angel,et al.  15 meter multiple mirror telescope design study , 1986 .