Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling.

We describe a transition from fully synchronous periodic oscillations to partially synchronous quasiperiodic dynamics in ensembles of identical oscillators with all-to-all coupling that nonlinearly depends on the generalized order parameters. We present an analytically solvable model that predicts a regime where the mean field does not entrain individual oscillators, but has a frequency incommensurate to theirs. The self-organized onset of quasiperiodicity is illustrated with Landau-Stuart oscillators and a Josephson junction array with a nonlinear coupling.

[1]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[2]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[3]  H. W. Veen,et al.  Handbook of Biological Physics , 1996 .