Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation

The relative importance of environmental filtering, biotic interactions and neutral processes in community assembly remains an openly debated question and one that is increasingly addressed using phylogenetic approaches. Closely related species may occur together more frequently than expected (phylogenetic clustering) if environmental filtering operates on traits with significant phylogenetic signal. Recent studies show that phylogenetic clustering tends to increase with spatial scale, presumably because greater environmental variation is encompassed at larger spatial scales, providing opportunities for species to sort across environmental gradients. However, if environmental filtering is the cause of species sorting along environmental gradients, then environmental variation rather than spatial scale per se should drive the processes governing community assembly. Using species abundance and light availability data from a long-term experiment in Minnesota oak savanna understory communities, we explicitly test the hypothesis that greater environmental variation results in greater phylogenetic clustering when spatial scale is held constant. Concordant with previous studies, we found that phylogenetic community structure varied with spatial extent. At the landscape scale (~1000 ha), communities were phylogenetically clustered. At the local scale (0.375ha), phylogenetic community structure varied among plots. As hypothesized, plots encompassing the greatest environmental variation in light availability exhibited the strongest phylogenetic clustering. We also found strong correlations between species functional traits, particularly specific leaf area (SLA) and perimeter per area (PA), and species light availability niche. There was also a phylogenetic signal in both functional traits and species light availability niche, providing a mechanistic explanation for phylogenetic clustering in relation to light availability. We conclude that the pattern of increased phylogenetic clustering with increased environmental variation is a consequence of environmental filtering acting on phylogenetically conserved functional traits. These results indicate that the importance of environmental filtering in community assembly depends not on spatial scale per se, but on the steepness of the environmental gradient.

[1]  N. Pierce Origin of Species , 1914, Nature.

[2]  Thomas W. Schoener,et al.  Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats , 1970 .

[3]  Thomas J. Givnish,et al.  Sizes and Shapes of Liane Leaves , 1976, The American Naturalist.

[4]  J. Diamond,et al.  Ecology and Evolution of Communities , 1976, Nature.

[5]  F. Bazzaz,et al.  Underground Niche Separation in Successional Plants , 1976 .

[6]  Stephen P. Hubbell,et al.  Tree Dispersion, Abundance, and Diversity in a Tropical Dry Forest , 1979, Science.

[7]  Thomas B. Starr,et al.  Hierarchy: Perspectives for Ecological Complexity , 1982 .

[8]  D. Tilman Resource competition and community structure. , 1983, Monographs in population biology.

[9]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[10]  R. Ricklefs,et al.  Community Diversity: Relative Roles of Local and Regional Processes , 1987, Science.

[11]  D. A. King The Adaptive Significance of Tree Height , 1990, The American Naturalist.

[12]  P. Chesson,et al.  A need for niches? , 1991, Trends in ecology & evolution.

[13]  K. Bremer,et al.  Asteraceae: Cladistics and Classification , 1994 .

[14]  J. Bruhl Sedge genera of the world: Relationships and a new classification of the Cyperaceae , 1995 .

[15]  E. Menges,et al.  Life History Strategies of Florida Scrub Plants in Relation to Fire , 1995 .

[16]  R. Jansen,et al.  Phylogenetic relationships and patterns of character change in the tribe Lactuceae (Asteraceae) based on chloroplast DNA restriction site variation , 1995 .

[17]  E. Kellogg,et al.  When Genes Tell Different Stories: the Diploid Genera of Triticeae (Gramineae) , 1996 .

[18]  F. Bazzaz Plants in Changing Environments: Linking Physiological, Population, and Community Ecology , 1996 .

[19]  F. A. Bazzaz,et al.  Plants in Changing Environments. , 1997 .

[20]  J. Doyle,et al.  A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. , 1997, American journal of botany.

[21]  R. Olmstead,et al.  Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. , 1997, Molecular phylogenetics and evolution.

[22]  D Baum,et al.  Circumscription of the Malvales and relationships to other Rosidae: evidence from rbcL sequence data. , 1998, American journal of botany.

[23]  Francis Juanes,et al.  INFERRING ECOLOGICAL RELATIONSHIPS FROM THE EDGES OF SCATTER DIAGRAMS: COMPARISON OF REGRESSION TECHNIQUES , 1998 .

[24]  F. Brinkman,et al.  Phylogenetic analysis. , 1998, Methods of biochemical analysis.

[25]  Paul A. Keddy,et al.  Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species , 1998 .

[26]  J. Starr,et al.  Tribal Phylogeny of the Asteraceae Based on Two Non-Coding Chloroplast Sequences, the trnL Intron and trnL/trnF Intergenic Spacer , 1998 .

[27]  P. Reich,et al.  Generality of leaf trait relationships: a test across six biomes: Ecology , 1999 .

[28]  Victor A. Albert,et al.  A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide. , 1999, American journal of botany.

[29]  J. Silvertown,et al.  Hydrologically defined niches reveal a basis for species richness in plant communities , 1999, Nature.

[30]  P. Reich,et al.  Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. , 1999, American journal of botany.

[31]  K. Hilu,et al.  Phylogeny of Poaceae Inferred from matK Sequences , 1999 .

[32]  P. Reich,et al.  Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux density in deeply shaded conifer-dominated forest understory , 1999 .

[33]  W. Alverson,et al.  Phylogeny of the core Malvales: evidence from ndhF sequence data. , 1999, American journal of botany.

[34]  P. Herendeen,et al.  Phylogenetic pattern, diversity, and diversification of Eudicots , 1999 .

[35]  D. Soltis,et al.  Phylogeny of Basal Angiosperms: Analyses of Five Genes from Three Genomes1 , 2000, International Journal of Plant Sciences.

[36]  R. Olmstead,et al.  Molecular Systematics of Cyperaceae Tribe Cariceae Based on Two Chloroplast DNA Regions: ndhF and trnL Intron-intergenic Spacer , 2000 .

[37]  R. E. Harrison,et al.  Phylogenetic Relationships Among Species of Fragaria (Rosaceae) Inferred from Non-coding Nuclear and Chloroplast DNA Sequences , 2000 .

[38]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[39]  E. Kellogg,et al.  Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. , 2000, American journal of botany.

[40]  Campbell O. Webb,et al.  Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees , 2000, The American Naturalist.

[41]  D. Schluter,et al.  The Ecology of Adaptive Radiation , 2000 .

[42]  J. Yokoyama,et al.  Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. , 2000, American journal of botany.

[43]  J. Stephen Brewer,et al.  Ecological Assembly Rules: Perspectives, Advances, Retreats , 2000 .

[44]  M. Arroyo,et al.  Elucidating deep-level phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions , 2001 .

[45]  A. Prinzing The niche of higher plants: evidence for phylogenetic conservatism , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  E. Roalson,et al.  Phylogenetic Relationships in Cariceae (Cyperaceae) Based on ITS (nrDNA) and trnT-L-F (cpDNA) Region Sequences: Assessment of Subgeneric and Sectional Relationships in Carex with Emphasis on Section Acrocystis , 2009 .

[47]  Mark W. Chase,et al.  Evolution of the angiosperms: calibrating the family tree , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  S. Hubbell,et al.  The unified neutral theory of biodiversity and biogeography at age ten. , 2011, Trends in ecology & evolution.

[49]  K. Mummenhoff,et al.  Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data , 2001, Plant Systematics and Evolution.

[50]  P. Reich,et al.  Strategy shifts in leaf physiology, structure and nutrient content between species of high‐ and low‐rainfall and high‐ and low‐nutrient habitats , 2001 .

[51]  Jerrold I. Davis,et al.  Phylogeny and subfamilial classification of the grasses (Poaceae) , 2001 .

[52]  D. Soltis,et al.  Phylogenetic Analysis of Asterids Based on Sequences of Four Genes , 2001 .

[53]  E. Kellogg,et al.  A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. , 2001, American journal of botany.

[54]  S. Wilkes,et al.  Isolation, characterization, and systematic significance of 2-pyrone-4,6-dicarboxylic acid in Rosaceae. , 2001, Phytochemistry.

[55]  M. Sanderson,et al.  Phylogenetic Analysis of Nuclear Ribosomal ITS/5.8S Sequences in the Tribe Millettieae (Fabaceae): Poecilanthe-Cyclolobium, the core Millettieae, and the Callerya Group , 2009 .

[56]  K. Bremer GONDWANAN EVOLUTION OF THE GRASS ALLIANCE OF FAMILIES (POALES) , 2002, Evolution; international journal of organic evolution.

[57]  Jessica Gurevitch,et al.  Ecography 25: 601 -- 615, 2002 , 2022 .

[58]  M. Chase,et al.  Systematics of the tribe Podalyrieae (Fabaceae) based on DNA, morphological and chemical data , 2002 .

[59]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[60]  Dz Z. Li,et al.  Phylogeny of Aceraceae Based on ITS and trnL-F Data Sets , 2002 .

[61]  Pamela S Soltis,et al.  Phylogeny of seed plants based on evidence from eight genes. , 2002, American journal of botany.

[62]  E. Powell,et al.  Phylogenetic relationships within the blueberry tribe (Vaccinieae, Ericaceae) based on sequence data from MATK and nuclear ribosomal ITS regions, with comments on the placement of Satyria. , 2002, American journal of botany.

[63]  E. Paradis,et al.  Analysis of comparative data using generalized estimating equations. , 2002, Journal of theoretical biology.

[64]  Jocelyn C Hall,et al.  Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. , 2002, American journal of botany.

[65]  B. G. Baldwin,et al.  Nuclear rDNA Evidence for Major Lineages of Helenioid Heliantheae (Compositae) , 2009 .

[66]  R. Spangler Taxonomy of Sarga, Sorghum and Vacoparis (Poaceae: Andropogoneae) , 2003 .

[67]  M. Luckow,et al.  The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context1 , 2003, Plant Physiology.

[68]  T. O. Crist,et al.  Partitioning Species Diversity across Landscapes and Regions: A Hierarchical Analysis of α, β, and γ Diversity , 2003, The American Naturalist.

[69]  J. Lundberg,et al.  A Phylogenetic Study of the Order Asterales Using One Morphological and Three Molecular Data Sets , 2003, International Journal of Plant Sciences.

[70]  Cynthia S. Brown,et al.  Community assembly and invasion: An experimental test of neutral versus niche processes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  C. Neinhuis,et al.  Angiosperm phylogeny based on matK sequence information. , 2003, American journal of botany.

[72]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[73]  E. Kellogg,et al.  A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. , 2003, American journal of botany.

[74]  J. Losos,et al.  Phylogenetic comparative methods and the geography of speciation , 2003 .

[75]  P. Reich,et al.  The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies , 2003, International Journal of Plant Sciences.

[76]  N. Holbrook,et al.  The ‘hydrology’ of leaves: co‐ordination of structure and function in temperate woody species , 2003 .

[77]  Wen-Hsiung Li,et al.  Dating the Monocot–Dicot Divergence and the Origin of Core Eudicots Using Whole Chloroplast Genomes , 2004, Journal of Molecular Evolution.

[78]  M. Donoghue,et al.  The Phylogeny of Rosoideae (Rosaceae) Based on Sequences of the Internal Transcribed Spacers (ITS) of Nuclear Ribosomal DNA and the trnL/F Region of Chloroplast DNA , 2003, International Journal of Plant Sciences.

[79]  T. O. Crist,et al.  Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. , 2003, The American naturalist.

[80]  Robert K Jansen,et al.  ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. , 2003, Molecular phylogenetics and evolution.

[81]  R. Jansen,et al.  The use of a non-coding region of chloroplast DNA in phylogenetic studies of the subtribeSonchinae (Asteraceae:Lactuceae) , 2004, Plant Systematics and Evolution.

[82]  Pamela S Soltis,et al.  Darwin's abominable mystery: Insights from a supertree of the angiosperms , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[83]  K. Kitajima Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees , 1994, Oecologia.

[84]  David Tilman,et al.  Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[85]  R. Ricklefs,et al.  The region effect on mesoscale plant species richness between eastern Asia and eastern North America , 2004 .

[86]  M. Chase,et al.  An assessment of suprageneric phylogeny inCyperaceae usingrbcL DNA sequences , 1998, Plant Systematics and Evolution.

[87]  M. Chase Monocot relationships: an overview. , 2004, American journal of botany.

[88]  M. Donoghue,et al.  Historical biogeography, ecology and species richness. , 2004, Trends in ecology & evolution.

[89]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[90]  S. Warwick,et al.  Phylogeny of Smelowskia and related genera (Brassicaceae) based on nuclear ITS DNA and chloroplast trnL intron DNA sequences , 2004 .

[91]  David D. Ackerly,et al.  FUNCTIONAL STRATEGIES OF CHAPARRAL SHRUBS IN RELATION TO SEASONAL WATER DEFICIT AND DISTURBANCE , 2004 .

[92]  K. H. Asay,et al.  Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences , 1995, Theoretical and Applied Genetics.

[93]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[94]  D. Ackerly,et al.  Adaptation, Niche Conservatism, and Convergence: Comparative Studies of Leaf Evolution in the California Chaparral , 2004, The American Naturalist.

[95]  S. Graham,et al.  The imbalanced supertree of flowering-plant phylogeny , 2004, Genome Biology.

[96]  R. Olmstead,et al.  Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. , 2004, Molecular phylogenetics and evolution.

[97]  K. Hilu Phylogenetics and chromosomal evolution in the Poaceae (grasses) , 2004 .

[98]  D. Soltis,et al.  The origin and diversification of angiosperms. , 2004, American journal of botany.

[99]  J. G. Burleigh,et al.  Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. , 2004, American journal of botany.

[100]  J. Cavender-Bares,et al.  Phylogenetic Overdispersion in Floridian Oak Communities , 2004, The American Naturalist.

[101]  Jeannine Cavender-Bares,et al.  MULTIPLE TRAIT ASSOCIATIONS IN RELATION TO HABITAT DIFFERENTIATION AMONG 17 FLORIDIAN OAK SPECIES , 2004 .

[102]  C. D. Hulsey,et al.  Many-to-One Mapping of Form to Function: A General Principle in Organismal Design?1 , 2005, Integrative and comparative biology.

[103]  K. McConway,et al.  Absence of phylogenetic signal in the niche structure of meadow plant communities , 2006, Proceedings of the Royal Society B: Biological Sciences.

[104]  M. Bowler,et al.  A NEW APPLICATION OF STORAGE DYNAMICS: DIFFERENTIAL SENSITIVITY, DIFFUSE COMPETITION, AND TEMPORAL NICHES , 2005 .

[105]  R. Gutell,et al.  Phylogenetic Analyses of Basal Angiosperms Based on Nine Plastid, Mitochondrial, and Nuclear Genes , 2005, International Journal of Plant Sciences.

[106]  C. Graham,et al.  Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology , 2005 .

[107]  M. Chase,et al.  Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences , 2005 .

[108]  L. Harmon,et al.  PHYLOGENETIC ANALYSIS OF ECOMORPHOLOGICAL DIVERGENCE, COMMUNITY STRUCTURE, AND DIVERSIFICATION RATES IN DUSKY SALAMANDERS (PLETHODONTIDAE: DESMOGNATHUS) , 2005, Evolution; international journal of organic evolution.

[109]  Campbell O. Webb,et al.  Phylomatic: tree assembly for applied phylogenetics , 2005 .

[110]  William F. Fagan,et al.  Phylogenetic and Growth Form Variation in the Scaling of Nitrogen and Phosphorus in the Seed Plants , 2006, The American Naturalist.

[111]  Stephen P Hubbell,et al.  The phylogenetic structure of a neotropical forest tree community. , 2006, Ecology.

[112]  Campbell O. Webb,et al.  Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. , 2006, Ecological applications : a publication of the Ecological Society of America.

[113]  M. McPeek,et al.  Coexistence of the niche and neutral perspectives in community ecology. , 2006, Ecology.

[114]  G. A. Verboom,et al.  Phylogenetic Relatedness Limits Co‐occurrence at Fine Spatial Scales: Evidence from the Schoenoid Sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa , 2006, The American Naturalist.

[115]  J. Slingsby,et al.  Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. , 2007, The American naturalist.

[116]  Marten Scheffer,et al.  Self-organized similarity, the evolutionary emergence of groups of similar species. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[117]  A. White,et al.  Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes , 2006 .

[118]  B. Enquist,et al.  Rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[119]  Jeannine Cavender-Bares,et al.  Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. , 2006, Ecology.

[120]  A. Kerkhoff,et al.  Organ Partitioning and Distribution across the Seed Plants: Assessing the Relative Importance of Phylogeny and Function , 2007, International Journal of Plant Sciences.

[121]  David W. Peterson,et al.  Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone , 2007, Plant Ecology.

[122]  M. Donoghue,et al.  The relevance of phylogeny to studies of global change. , 2007, Trends in ecology & evolution.

[123]  C. Lusk,et al.  Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny. , 2007, The New phytologist.

[124]  D. Tilman,et al.  Resource Use Patterns Predict Long‐Term Outcomes of Plant Competition for Nutrients and Light , 2007, The American Naturalist.

[125]  O. Hardy,et al.  Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity , 2007 .

[126]  Brian J Enquist,et al.  Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. , 2007, American journal of botany.

[127]  Brian J Enquist,et al.  The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. , 2007, Ecology.

[128]  J. Losos Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. , 2008, Ecology letters.

[129]  Stephen P. Hubbell,et al.  A Phylogenetic Perspective on the Distribution of Plant Diversity , 2008 .

[130]  Olivier J. Hardy,et al.  Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community , 2008 .

[131]  J. Losos Rejoinder to Wiens (2008): Phylogenetic niche conservatism, its occurrence and importance , 2008 .

[132]  R. Thorne The classification and geography of the flowering plants: Dicotyledons of the class Angiospermae , 2000, The Botanical Review.

[133]  W. Kress,et al.  rbcL and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies , 2008 .

[134]  Campbell O. Webb,et al.  Bioinformatics Applications Note Phylocom: Software for the Analysis of Phylogenetic Community Structure and Trait Evolution , 2022 .

[135]  T. T. Kozlowski,et al.  Acclimation and adaptive responses of woody plants to environmental stresses , 2002, The Botanical Review.

[136]  G. van der Velde,et al.  Ecological niches. Linking classical and contemporary approaches , 2008 .

[137]  Jerrold I. Davis,et al.  Phylogenetics and character evolution in the grass family (Poaceae): Simultaneous analysis of morphological and Chloroplast DNA restriction site character sets , 2008, The Botanical Review.

[138]  Nathan J B Kraft,et al.  Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest , 2008, Science.

[139]  B. Emerson,et al.  Phylogenetic analysis of community assembly and structure over space and time. , 2008, Trends in ecology & evolution.

[140]  J. Schaminée,et al.  Less lineages - more trait variation: phylogenetically clustered plant communities are functionally more diverse. , 2008, Ecology letters.

[141]  J. Cavender-Bares,et al.  The merging of community ecology and phylogenetic biology. , 2009, Ecology letters.

[142]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[143]  Campbell O. Webb,et al.  Emerging patterns in the comparative analysis of phylogenetic community structure , 2009, Molecular ecology.