Sensitivity of cavity optomechanical field sensors

This article presents a technique for modeling cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying strain across the sensor. The effect of this strain is accounted for by separating the mechanical motion of the sensor into eigenmodes, each modeled by a simple harmonic oscillator. The force induced on each oscillator can then be determined from an overlap integral between strain and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected.

[1]  Hong Cai,et al.  Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator. , 2011, Optics letters.

[2]  Dmitry Budker,et al.  Magnetic resonance imaging with an optical atomic magnetometer , 2006, Proceedings of the National Academy of Sciences.

[3]  Pavel Ripka,et al.  Advances in Magnetic Field Sensors , 2010, IEEE Sensors Journal.

[4]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[5]  Hans D. Hallen,et al.  Scanning Hall probe microscopy , 1992 .

[6]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[7]  D. Stamper-Kurn,et al.  High-resolution magnetometry with a spinor Bose-Einstein condensate. , 2007, Physical review letters.

[8]  Joachim Knittel,et al.  Cooling and control of a cavity optoelectromechanical system. , 2009, Physical review letters.

[9]  Philip W. T. Pong,et al.  Advances in magnetometry , 2007, SPIE Defense + Commercial Sensing.

[10]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[11]  Marina Díaz-Michelena,et al.  Small Magnetic Sensors for Space Applications , 2009, Sensors.

[12]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[13]  Vittorio Pizzella,et al.  SQUID systems for biomagnetic imaging , 2001 .

[14]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[15]  O. Painter,et al.  Measurement of the quantum zero-point motion of a nanomechanical resonator , 2011, 1108.4680.

[16]  O. Le Traon,et al.  A micropillar for cavity optomechanics , 2011, 1107.3828.

[17]  M. Lukin,et al.  Quantum control of proximal spins using nanoscale magnetic resonance imaging , 2011, 1103.0546.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[20]  E. Polzik,et al.  High-Q optomechanical GaAs nanomembranes , 2011, 1110.1618.

[21]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[22]  M. Romalis,et al.  Atomic magnetometers for materials characterization , 2011 .

[23]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[24]  A. Ney,et al.  Sensitive SQUID magnetometry for studying nanomagnetism , 2011, 1101.4764.

[25]  O. Arcizet,et al.  High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators , 2008, 0805.1608.

[26]  Dmitry Budker,et al.  Detection of the Meissner effect with a diamond magnetometer , 2011 .

[27]  J. Blanchard,et al.  Near-zero-field nuclear magnetic resonance. , 2011, Physical review letters.

[28]  D Budker,et al.  Note: Detection of a single cobalt microparticle with a microfabricated atomic magnetometer. , 2011, The Review of scientific instruments.

[29]  C. Dietrich,et al.  One- and two-dimensional cavity modes in ZnO microwires , 2011 .

[30]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[31]  J. Palva,et al.  New vistas for α-frequency band oscillations , 2007, Trends in Neurosciences.

[32]  Frank Bucholtz,et al.  High-frequency fibre-optic magnetometer with 70 fT/ square root (Hz) resolution , 1989 .

[33]  R. Schoenfeld,et al.  Real time magnetic field sensing and imaging using a single spin in diamond. , 2010, Physical review letters.

[34]  T. Mcrae,et al.  Near threshold all-optical backaction amplifier , 2011, 1109.2004.

[35]  Brian Pepper,et al.  Optomechanical trampoline resonators. , 2011, Optics express.

[36]  D. Rugar,et al.  Nuclear magnetic resonance imaging with 90-nm resolution. , 2007, Nature Nanotechnology.