Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices

[1]  R. Nicoll,et al.  The impact of postsynaptic calcium on synaptic transmission — its role in long-term potentiation , 1989, Trends in Neurosciences.

[2]  Mary B. Kennedy,et al.  Regulation of synaptic transmission in the central nervous system: Long-term potentiation , 1989, Cell.

[3]  Arnold R. Kriegstein,et al.  Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex , 1989, Journal of Neuroscience Methods.

[4]  C. Stevens,et al.  NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus , 1989, Nature.

[5]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[6]  D L Alkon,et al.  Imaging of memory-specific changes in the distribution of protein kinase C in the hippocampus. , 1989, Science.

[7]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[8]  J. W. Goh,et al.  A pertussis toxin-sensitive G protein in hippocampal long-term potentiation. , 1989, Science.

[9]  Graham L. Collingridge,et al.  Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation , 1989, Nature.

[10]  C. Stevens Strengthening the synapses , 1989, Nature.

[11]  P. Andersen,et al.  Amplitude fluctuations in small EPSPs recorded from CA1 pyramidal cells in the guinea pig hippocampal slice , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  D. Linden,et al.  The two major phosphoproteins in growth cones are probably identical to two protein kinase C substrates correlated with persistence of long- term potentiation , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  G. Lynch,et al.  Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. , 1988, Science.

[14]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[15]  E. W. Kairiss,et al.  Long-term synaptic potentiation. , 1988, Science.

[16]  R S Zucker,et al.  Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. , 1988, Science.

[17]  S N Davies,et al.  Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. , 1988, Science.

[18]  F. Ghigo,et al.  A giant intergalactic H I bubble near Arp143 , 1987, Nature.

[19]  Grzegorz Hess,et al.  Quantal analysis of paired-pulse facilitation in guinea pig hippocampal slices , 1987, Neuroscience Letters.

[20]  Stephen J. Smith Progress on LTP at hippocampal synapses: a post-synaptic Ca2+ trigger for memory storage? , 1987, Trends in Neurosciences.

[21]  Robert C. Malenka,et al.  Phorbol esters enhance transmitter release in rat hippocampal slices , 1987, Brain Research.

[22]  S. Kelso,et al.  Hebbian synapses in hippocampus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. R. Sastry,et al.  Associative induction of posttetanic and long-term potentiation in CA1 neurons of rat hippocampus. , 1986, Science.

[24]  R. Malinow,et al.  Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation , 1986, Nature.

[25]  F. Werblin,et al.  Gated currents generate single spike activity in amacrine cells of the tiger salamander retina. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Wigström,et al.  Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. , 1986, Acta physiologica Scandinavica.

[27]  W. Greenough,et al.  Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice , 1984, Brain Research.

[28]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[29]  R. Nicoll,et al.  Feed‐forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[30]  T. Bliss,et al.  Long-term potentiation of the perforant path in vivo is associated with increased glutamate release , 1982, Nature.

[31]  B. McNaughton,et al.  Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro. , 1981, Journal of neurophysiology.

[32]  K. Skrede,et al.  Increased resting and evoked release of transmitter following repetitive electrical tetanization in hippocampus: a biochemical correlate to long-lasting synaptic potentiation , 1981, Brain Research.

[33]  P. Andersen,et al.  Specific long-lasting potentiation of synaptic transmission in hippocampal slices , 1977, Nature.

[34]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[35]  F. Plum Handbook of Physiology. , 1960 .

[36]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[37]  S. Redman Quantal analysis of synaptic potentials in neurons of the central nervous system. , 1990, Physiological reviews.