COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale

We study the relation between molecular gas and star formation in a volume-limited sample of 222 galaxies from the COLD GASS survey, with measurements of the CO(1–0) line from the IRAM 30-m telescope. The galaxies are at redshifts 0.025 < z < 0.05 and have stellar masses in the range 10.0 < log M� /M� < 11.5. The IRAM measurements are complemented by deep Arecibo H I observations and homogeneous Sloan Digital Sky Survey and GALEX photometry. A reference sample that includes both ultraviolet (UV) and far-infrared data is used to calibrate our estimates of star formation rates from the seven optical/UV bands. The mean molecular gas depletion time-scale [tdep(H2)] for all the galaxies in our sample is 1 Gyr; however, tdep(H2) increases by a factor of 6 from a value of ∼0.5 Gyr for galaxies with stellar –

[1]  A. Leroy,et al.  WHICH PHASE OF THE INTERSTELLAR MEDIUM CORRELATES WITH THE STAR FORMATION RATE? , 2011, 1101.1296.

[2]  F. Bertoldi,et al.  MOST SUBMILLIMETER GALAXIES ARE MAJOR MERGERS , 2010, 1009.2495.

[3]  A. Leroy,et al.  THE SCALE DEPENDENCE OF THE MOLECULAR GAS DEPLETION TIME IN M33 , 2010, 1009.1651.

[4]  D. Elbaz,et al.  Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared , 2010, 1008.2000.

[5]  R. Giovanelli,et al.  UGC8802: A MASSIVE DISK GALAXY IN FORMATION , 2010, 1007.3272.

[6]  A. Weiss,et al.  MULTI-TRANSITION STUDY OF M51'S MOLECULAR GAS SPIRAL ARMS , 2010, 1007.0692.

[7]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey - II. The star formation efficiency of massive galaxies , 2010, 1006.5447.

[8]  A. Cimatti,et al.  Far-infrared properties of submillimeter and optically faint radio galaxies , 2010, 1005.1154.

[9]  A. Cimatti,et al.  The first Herschel view of the mass-SFR link in high-z galaxies , 2010, 1005.1089.

[10]  G. Kauffmann,et al.  The atomic-to-molecular transition and its relation to the scaling properties of galaxy discs in the local Universe , 2010, 1004.2325.

[11]  Kevin Xu,et al.  THE GREAT OBSERVATORIES ALL-SKY LIRG SURVEY: COMPARISON OF ULTRAVIOLET AND FAR-INFRARED PROPERTIES , 2010, 1004.0985.

[12]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[13]  D. Calzetti,et al.  Molecular and atomic gas in the Local Group galaxy M 33 , 2010, 1003.3222.

[14]  D. Calzetti,et al.  TOTAL INFRARED LUMINOSITY ESTIMATION OF RESOLVED AND UNRESOLVED GALAXIES , 2010, 1003.1339.

[15]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[16]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[17]  G. Kauffmann,et al.  The UV-optical colours of brightest cluster galaxies in optically and X-ray selected clusters , 2009, 0909.1196.

[18]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey I: gas fraction scaling relations of massive galaxies and first data release , 2009, 0912.1610.

[19]  Bonn,et al.  High‐resolution CO and radio imaging of ULIRGs: extended CO structures and implications for the universal star formation law , 2009, 0912.1598.

[20]  L. Blitz,et al.  Tidal imprints of a dark subhalo on the outskirts of the Milky Way , 2009 .

[21]  R. Teyssier,et al.  MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED , 2009, 0905.4669.

[22]  E. Brinks,et al.  HERACLES: THE HERA CO LINE EXTRAGALACTIC SURVEY , 2009, 0905.4742.

[23]  C. McKee,et al.  THE STAR FORMATION LAW IN ATOMIC AND MOLECULAR GAS , 2009, 0904.0009.

[24]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[25]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[26]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[27]  E. Brinks,et al.  THINGS: THE H i NEARBY GALAXY SURVEY , 2008, 0810.2125.

[28]  A. Connolly,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 A PILOT SURVEY OF HI IN FIELD GALAXIES AT REDSHIFT Z∼0.2 , 2022 .

[29]  C. Conselice,et al.  Exploring the Evolutionary Paths of the Most Massive Galaxies since z ~ 2 , 2008, 0807.1069.

[30]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[31]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[32]  University of Hertfordshire,et al.  Evidence of enhanced star formation efficiency in luminous and ultraluminous infrared galaxies , 2007, 0712.0582.

[33]  Benjamin D. Johnson,et al.  Ultraviolet, Optical, and Infrared Constraints on Models of Stellar Populations and Dust Attenuation , 2007, 0712.3051.

[34]  F. Walter,et al.  Observations of Dense Molecular Gas in a Quasar Host Galaxy at z = 6.42: Further Evidence for a Nonlinear Dense Gas-Star Formation Relation at Early Cosmic Times , 2007, 0710.4525.

[35]  D. Calzetti,et al.  Star Formation in NGC 5194 (M51a). II. The Spatially Resolved Star Formation Law , 2007, 0708.0922.

[36]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[37]  Laboratoire d'Astrophysique de Marseille,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties , 2007, 0706.3938.

[38]  A. Cimatti,et al.  Dynamical Properties of z ~ 2 Star-forming Galaxies and a Universal Star Formation Relation , 2007, 0706.2656.

[39]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[40]  R. Giovanelli,et al.  Rotational Widths for Use in the Tully-Fisher Relation. II. The Impact of Surface Brightness , 2007, 0704.2209.

[41]  C. McKee,et al.  The Global Evolution of Giant Molecular Clouds. I. Model Formulation and Quasi-Equilibrium Behavior , 2006, astro-ph/0608471.

[42]  E. al.,et al.  The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy , 2005, astro-ph/0508301.

[43]  A. Hopkins,et al.  The Star Formation History of Damped Lyα Absorbers , 2005, astro-ph/0505418.

[44]  R. Giovanelli,et al.  A Digital Archive of H I 21 Centimeter Line Spectra of Optically Targeted Galaxies , 2005, astro-ph/0505025.

[45]  E. Rosolowsky,et al.  Giant Molecular Clouds in M64 , 2005, astro-ph/0501387.

[46]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[47]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[48]  J. Kneib,et al.  Molecular gas in a z ~ 2.5 triply-imaged, sub-mJy submillimetre galaxy typical of the cosmic far-infrared background , 2004, astro-ph/0409502.

[49]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[50]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[51]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[52]  P. Solomon,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[53]  P. Madau,et al.  A New Nonparametric Approach to Galaxy Morphological Classification , 2003, astro-ph/0311352.

[54]  F. Bertoldi,et al.  Interferometric Observations of Powerful CO Emission from Three Submillimeter Galaxies at z = 2.39, 2.51, and 3.35 , 2003 .

[55]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[56]  P. Solomon,et al.  Molecular Gas and Dust at z = 2.6 in SMM J14011+0252: A Strongly Lensed Ultraluminous Galaxy, Not a Huge Massive Disk , 2002, astro-ph/0210040.

[57]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[58]  Reinhard Genzel,et al.  Spatially Resolved Millimeter Interferometry of SMM J02399–0136: A Very Massive Galaxy at z = 2.8 , 2002, astro-ph/0210449.

[59]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[60]  ApJ, in press , 1999 .

[61]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[62]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[63]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[64]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[65]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[66]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[67]  T. Conrow,et al.  IRAS Faint Source Survey, Explanatory supplement version 2 , 1992 .

[68]  B. Soifer,et al.  Molecular gas in luminous infrared galaxies , 1991 .

[69]  R. Kennicutt The Star Formation Law in Galactic Disks , 1989 .

[70]  M. Moshir IRAS Faint Source Survey : explanatory supplement , 1989 .

[71]  J. Gorkom,et al.  The Peculiar Galaxy IC 4553. II. VLA Observations of the Neutral Hydrogen , 1987 .

[72]  D. Sanders,et al.  CO detections and IRAS observations of bright radio spiral galaxies at cz equal or less than 9000 kilometers per second , 1985 .

[73]  M. Schmidt The Rate of Star Formation , 1959 .