Toxicity in allelopathy: In Silico Approach

[1]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[2]  G S Omenn,et al.  Assessing the risk assessment paradigm. , 1995, Toxicology.

[3]  J. Wong,et al.  Mimosine, the Allelochemical from the Leguminous Tree Leucaena leucocephala, Selectively Enhances Cell Proliferation in Dinoflagellates , 2002, Applied and Environmental Microbiology.

[4]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[5]  A. Höskuldsson PLS regression methods , 1988 .

[6]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[7]  Worth Andrew,et al.  The Development and Validation of Expert Systems for Predicting Toxicity. , 1998 .

[8]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[9]  D E McRee,et al.  Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. , 2000, Molecular cell.

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[12]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[13]  S. Morgan,et al.  Outlier detection in multivariate analytical chemical data. , 1998, Analytical chemistry.

[14]  Giuseppina C. Gini,et al.  Predictive Carcinogenicity: A Model for Aromatic Compounds, with Nitrogen-Containing Substituents, Based on Molecular Descriptors Using an Artificial Neural Network , 1999, J. Chem. Inf. Comput. Sci..

[15]  Didier Villemin,et al.  Predicting Carcinogenicity of Polycyclic Aromatic Hydrocarbons from Back-Propagation Neural Network , 1994, Journal of chemical information and computer sciences.

[16]  C. Waller,et al.  Modeling the cytochrome P450-mediated metabolism of chlorinated volatile organic compounds. , 1996, Drug metabolism and disposition: the biological fate of chemicals.

[17]  Emilio Benfenati,et al.  ANVAS: Artificial Neural Variables Adaptation System for descriptor selection , 2003, J. Comput. Aided Mol. Des..

[18]  Douglas M. Hawkins,et al.  Assessing Model Fit by Cross-Validation , 2003, J. Chem. Inf. Comput. Sci..

[19]  J Ashby,et al.  International Commission for Protection Against Environmental Mutagens and Carcinogens. Two million rodent carcinogens? The role of SAR and QSAR in their detection. , 1994, Mutation research.

[20]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[21]  J. Topliss,et al.  Chance correlations in structure-activity studies using multiple regression analysis , 1972 .

[22]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[23]  Wolfgang Sippl,et al.  Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors , 2001, J. Comput. Aided Mol. Des..

[24]  E Benfenati,et al.  Computational predictive programs (expert systems) in toxicology. , 1997, Toxicology.

[25]  Wolfgang Sippl,et al.  Development of biologically active compounds by combining 3D QSAR and structure-based design methods , 2002, J. Comput. Aided Mol. Des..

[26]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[27]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[28]  A. Golbraikh,et al.  Validation of protein-based alignment in 3D quantitative structure-activity relationships with CoMFA models. , 2000, European journal of medicinal chemistry.

[29]  J. Topliss,et al.  Chance factors in studies of quantitative structure-activity relationships. , 1979, Journal of medicinal chemistry.