Real-time probe based quantitative determination of material properties at the nanoscale

Tailoring the properties of a material at the nanoscale holds the promise of achieving hitherto unparalleled specificity of the desired behavior of the material. Key to realizing this potential of tailoring materials at the nanoscale are methods for rapidly estimating physical properties of the material at the nanoscale. In this paper, we report a method for simultaneously determining the topography, stiffness and dissipative properties of materials at the nanoscale in a probe based dynamic mode operation. The method is particularly suited for investigating soft-matter such as polymers and bio-matter. We use perturbation analysis tools for mapping dissipative and stiffness properties of material into parameters of an equivalent linear time-invariant model. Parameters of the equivalent model are adaptively estimated, where, for robust estimation, a multi-frequency excitation of the probe is introduced. We demonstrate that the reported method of simultaneously determining multiple material properties can be implemented in real-time on existing probe based instruments. We further demonstrate the effectiveness of the method by investigating properties of a polymer blend in real-time.

[1]  I. Newton Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy , 2006 .

[2]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[3]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[4]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[5]  Murti V. Salapaka,et al.  Harmonic and power balance tools for tapping-mode atomic force microscope , 2001 .

[6]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[7]  J. Gillis,et al.  Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .

[8]  Srinivasa M. Salapaka,et al.  Sample-profile estimate for fast atomic force microscopy , 2005 .

[9]  M. Salapaka,et al.  Real time estimation of equivalent cantilever parameters in tapping mode atomic force microscopy , 2009 .

[10]  Ricardo Garcia,et al.  Unifying theory of tapping-mode atomic-force microscopy , 2002 .

[11]  Murti V. Salapaka,et al.  Thermally driven non-contact atomic force microscopy , 2005 .

[12]  Murti V. Salapaka,et al.  A Review of the Systems Approach to the Analysis of Dynamic-Mode Atomic Force Microscopy , 2007, IEEE Transactions on Control Systems Technology.

[13]  A. Raman,et al.  Origins of phase contrast in the atomic force microscope in liquids , 2009, Proceedings of the National Academy of Sciences.

[14]  D. Schryvers,et al.  Advanced three-dimensional electron microscopy techniques in the quest for better structural and functional materials , 2013, Science and technology of advanced materials.

[15]  G. Haugstad,et al.  Digital Pulsed Force Mode AFM and Confocal Raman Microscopy in Drug-Eluting Coatings Research , 2011 .

[17]  Sergei V. Kalinin,et al.  Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy , 2009, Nanotechnology.

[18]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[19]  Sergei V. Kalinin,et al.  Local bias-induced phase transitions , 2008 .

[20]  M. Salapaka,et al.  Erratum: “Real time estimation of equivalent cantilever parameters in tapping mode atomic force microscopy” [Appl. Phys. Lett. 95, 083113 (2009)] , 2012 .

[21]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[22]  R. Proksch,et al.  Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM , 2011, Nanotechnology.

[23]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[24]  G. Haugstad Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications , 2012 .

[25]  Murti V. Salapaka,et al.  Harmonic analysis based modeling of tapping-mode AFM , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).