Capacity Limits of Optical Fiber Networks

We describe a method to estimate the capacity limit of fiber-optic communication systems (or ¿fiber channels¿) based on information theory. This paper is divided into two parts. Part 1 reviews fundamental concepts of digital communications and information theory. We treat digitization and modulation followed by information theory for channels both without and with memory. We provide explicit relationships between the commonly used signal-to-noise ratio and the optical signal-to-noise ratio. We further evaluate the performance of modulation constellations such as quadrature-amplitude modulation, combinations of amplitude-shift keying and phase-shift keying, exotic constellations, and concentric rings for an additive white Gaussian noise channel using coherent detection. Part 2 is devoted specifically to the "fiber channel.'' We review the physical phenomena present in transmission over optical fiber networks, including sources of noise, the need for optical filtering in optically-routed networks, and, most critically, the presence of fiber Kerr nonlinearity. We describe various transmission scenarios and impairment mitigation techniques, and define a fiber channel deemed to be the most relevant for communication over optically-routed networks. We proceed to evaluate a capacity limit estimate for this fiber channel using ring constellations. Several scenarios are considered, including uniform and optimized ring constellations, different fiber dispersion maps, and varying transmission distances. We further present evidences that point to the physical origin of the fiber capacity limitations and provide a comparison of recent record experiments with our capacity limit estimation.

[1]  John Kerr Ll.D. XL. A new relation between electricity and light: Dielectrified media birefringent , 1875 .

[2]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[3]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[4]  Harry Nyquist Certain Topics in Telegraph Transmission Theory , 1928 .

[5]  H. Nyquist,et al.  Abridgment of certain topics in telegraph transmission theory , 1928, Journal of the A.I.E.E..

[6]  W. Heitler,et al.  The quantum theory of radiation , 1936 .

[7]  J. R. Pierce Physical Sources of Noise , 1956, Proceedings of the IRE.

[8]  J. Hancock,et al.  Performance of Combined Amplitude and Phase-Modulated Communication Systems , 1960 .

[9]  H. Landau On the recovery of a band-limited signal, after instantaneous companding and subsequent band limiting , 1960 .

[10]  A. Yariv,et al.  Quantum Fluctuations and Noise in Parametric Processes. I. , 1961 .

[11]  W. L. Miranker,et al.  The recovery of distorted band-limited signals , 1961 .

[12]  J. Gordon,et al.  Quantum Effects in Communications Systems , 1962, Proceedings of the IRE.

[13]  J. Gordon,et al.  Quantum Statistics of Masers and Attenuators , 1963 .

[14]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[15]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[16]  Adam Lender Correlative level coding for binary-data transmission , 1966, IEEE Spectrum.

[17]  N. Bloembergen,et al.  THE STIMULATED RAMAN EFFECT. , 1967 .

[18]  R. Gallager Information Theory and Reliable Communication , 1968 .

[19]  D. Gloge,et al.  Dispersion in weakly guiding fibers. , 1971, Applied optics.

[20]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[21]  R. Stolen,et al.  Raman gain in glass optical waveguides , 1973 .

[22]  Brian W. Kernighan,et al.  Heuristic solution of a signal design optimization problem , 1973 .

[23]  Richard D. Gitlin,et al.  Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise , 1974, IEEE Trans. Commun..

[24]  Peter Kabal,et al.  Partial-Response Signaling , 1975, IEEE Trans. Commun..

[25]  Robert W. Hellwarth,et al.  Origin and frequency dependence of nonlinear optical susceptibilities of glasses , 1975 .

[26]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[27]  J. Pierce,et al.  Optical Channels: Practical Limits with Photon Counting , 1978, IEEE Trans. Commun..

[28]  Simon Haykin,et al.  Communication Systems , 1978 .

[29]  S. Pasupathy,et al.  Minimum shift keying: A spectrally efficient modulation , 1979, IEEE Communications Magazine.

[30]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[31]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[32]  J. L. Massey A generalized formulation of minimum shift keying modulation , 1980 .

[33]  R. Stolen,et al.  Nonlinearity in fiber transmission , 1980, Proceedings of the IEEE.

[34]  T. Aulin,et al.  Continuous Phase Modulation - Part I: Full Response Signaling , 1981, IEEE Transactions on Communications.

[35]  T. Aulin,et al.  Continuous Phase Modulation - Part II: Partial Response Signaling , 1981, IEEE Transactions on Communications.

[36]  John G. Proakis,et al.  Digital Communications , 1983 .

[37]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[38]  A. Einstein On the Quantum Theory of Radiation , 1983 .

[39]  A Tomita Cross talk caused by stimulated Raman scattering in single-mode wavelength-division multiplexed systems. , 1983, Optics letters.

[40]  A. Chraplyvy,et al.  Performance degradation due to stimulated Raman scattering in wavelength-division-multiplexed optical-fibre systems , 1983 .

[41]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[42]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[43]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[44]  Tor Aulin,et al.  Digital Phase Modulation , 1986, Applications of Communications Theory.

[45]  R. W. Tkach,et al.  Spontaneous Brillouin scattering for single-mode optical-fibre characterisation , 1986 .

[46]  Bernard Sklar,et al.  Digital communications , 1987 .

[47]  Bixio Rimoldi,et al.  A decomposition approach to CPM , 1988, IEEE Trans. Inf. Theory.

[48]  J. L. Massey Channel Models for Random-Access Systems , 1988 .

[49]  N. Olsson Lightwave systems with optical amplifiers , 1989 .

[50]  P. Henry Error-rate performance of optical amplifiers , 1989 .

[51]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[52]  R. Gray Source Coding Theory , 1989 .

[53]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[54]  P. Ye,et al.  Crosstalk in fiber Raman amplification for WDM systems , 1989 .

[55]  G. David Forney,et al.  Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations , 1989, IEEE J. Sel. Areas Commun..

[56]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[57]  J. Geist Capacity and cutoff rate for dense M-ary PSK constellations , 1990, IEEE Conference on Military Communications.

[58]  Shlomo Shamai,et al.  On the capacity of a twisted-wire pair: Gaussian model , 1990, IEEE Trans. Commun..

[59]  S V Chernikov,et al.  Ultrashort-pulse propagation in optical fibers. , 1990, Optics letters.

[60]  A. Chraplyvy Limitations on lightwave communications imposed by optical-fiber nonlinearities , 1990 .

[61]  D. Marcuse Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers , 1990 .

[62]  D. Marcuse,et al.  Effect of fiber nonlinearity on long-distance transmission , 1991 .

[63]  J.-J. Werner,et al.  The HDSL environment (high bit rate digital subscriber line) , 1991 .

[64]  Jean-Jacques Werner,et al.  The HDSL Environment , 1991, IEEE J. Sel. Areas Commun..

[65]  D. Marcuse Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion , 1991 .

[66]  S. V. Chernikov,et al.  Femtosecond soliton propagation in fibers with slowly decreasing dispersion , 1991 .

[67]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[68]  Malvin C. Teich,et al.  Bit-error rate for a lightwave communication system incorporating an erbium-doped fibre amplifier , 1991 .

[69]  Malvin C. Teich,et al.  Evolution of the statistical properties of photons passed through a traveling-wave laser amplifier , 1992 .

[70]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[71]  R.W. Tkach,et al.  Equalization in amplified WDM lightwave transmission systems , 1992, IEEE Photonics Technology Letters.

[72]  Malvin C. Teich,et al.  Photon point process for traveling-wave laser amplifiers , 1993 .

[73]  A. Bjarklev Optical Fiber Amplifiers: Design and System Applications , 1993 .

[74]  J. McInerney,et al.  Detailed analysis of coherence collapse in semiconductor lasers , 1993 .

[75]  J. S. Lee,et al.  Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain , 1994 .

[76]  M. V. Deventer,et al.  Polarization properties of stimulated Brillouin scattering in single-mode fibers , 1994 .

[77]  Dispersion flattening in a W fiber. , 1994, Applied optics.

[78]  Effect of Modulation Statistics on Raman Crosstalk in WDM Systems , 1994 .

[79]  A. Mecozzi Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers , 1994 .

[80]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[81]  D. Christodoulides,et al.  Evolution of stimulated Raman crosstalk in wavelength division multiplexed systems , 1996, IEEE Photonics Technology Letters.

[82]  Uziel Koren,et al.  Stimulated Brillouin scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode , 1996 .

[83]  Richard G. Lyons,et al.  Understanding Digital Signal Processing , 1996 .

[84]  Youichi Akasaka,et al.  High-dispersion-compensation ability and low nonlinearity of W-shaped DCF , 1996, Optical Fiber Communications, OFC..

[85]  Van Deventer,et al.  Fundamentals of Bidirectional Transmission over a Single Optical Fibre , 1996 .

[86]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[87]  Mark L. Stevens,et al.  A Wideband All-Optical WDM Network (Invited Paper) , 1996, IEEE J. Sel. Areas Commun..

[88]  Mark Leeson,et al.  Principles of Lightwave Communications , 1996 .

[89]  M. Gagnaire,et al.  An overview of broad-band access technologies , 1997, Proc. IEEE.

[90]  A. Willner Optical Fiber Telecommunications IIIB , 1997 .

[91]  Stephen B. Alexander Optical Communication Receiver Design , 1997 .

[92]  Dispersion compensating fibers , 1997, Proceedings of Optical Fiber Communication Conference (.

[93]  Martin Zirngibl,et al.  Analytical model of Raman gain effects in massive wavelength division multiplexed transmission systems , 1998 .

[94]  Andrew Sendonaris,et al.  Joint signaling strategies for approaching the capacity of twisted-pair channels , 1998, IEEE Trans. Commun..

[95]  Kumar N. Sivarajan,et al.  Optical Networks: A Practical Perspective , 1998 .

[96]  P. Winzer LINKING EQUATIONS BETWEEN PHOTON STATISTICS AND PHOTOCURRENT STATISTICS FOR TIME-VARYING STOCHASTIC PHOTON RATES , 1998 .

[97]  J.J. DeMarco,et al.  Rayleigh scattering limitations in distributed Raman pre-amplifiers , 1998, IEEE Photonics Technology Letters.

[98]  H. Haus,et al.  The noise figure of optical amplifiers , 1998, IEEE Photonics Technology Letters.

[99]  G. David Forney,et al.  Modulation and Coding for Linear Gaussian Channels , 1998, IEEE Trans. Inf. Theory.

[100]  Y.C. Chung,et al.  2.5 Gb/s x 16-channel bidirectional WDM transmission system using bidirectional erbium-doped fiber amplifier based on spectrally interleaved synchronized etalon filters , 1999, IEEE Photonics Technology Letters.

[101]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[102]  Robert H. Walden,et al.  Performance trends for analog to digital converters , 1999, IEEE Commun. Mag..

[103]  P. J. Winzer,et al.  Sensitivity enhancement of optical receivers by impulsive coding , 1999 .

[104]  N. Olsson,et al.  Erbium-Doped Fiber Amplifiers: Fundamentals and Technology , 1999 .

[105]  G. Raybon,et al.  Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems , 1999 .

[106]  Morten Nissov,et al.  Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers , 1999 .

[107]  S. Bigo,et al.  Cross-phase modulation suppressor for multispan dispersion-managed WDM transmissions , 2000, IEEE Photonics Technology Letters.

[108]  O. Ait Sab,et al.  Block turbo code performances for long-haul DWDM optical transmission systems , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[109]  Sebastien Bigo,et al.  10/spl times/10 Gb/s cross-phase modulation suppressor using WDM narrowband fiber Bragg gratings , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[110]  Lajos Hanzo,et al.  Single- and Multi-carrier Quadrature Amplitude Modulation : Principles and Applications for Personal Communications, WLANs and Broadcasting , 2000 .

[111]  S. Chernikov,et al.  Characterization of double Rayleigh scatter noise in Raman amplifiers , 2000, IEEE Photonics Technology Letters.

[112]  H. Haus Electromagnetic Noise and Quantum Optical Measurements , 2000 .

[113]  P. Mitra,et al.  The channel capacity of a fiber optics communication system: perturbation theory , 2000, physics/0007033.

[114]  Partha P. Mitra,et al.  Nonlinear limits to the information capacity of optical fibre communications , 2000, Nature.

[115]  Jau Tang The Shannon channel capacity of dispersion-free nonlinear optical fiber transmission , 2001 .

[116]  A. Gnauck,et al.  Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses , 2001, IEEE Photonics Technology Letters.

[117]  Peter J. Winzer Performance estimation of receivers corrupted by optical noise , 2001 .

[118]  Kiyoshi Fukuchi,et al.  Enabling technologies for 10 Tb/s transmission capacity and beyond , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[119]  G. Raybon,et al.  Pseudo-Linear Transmission of High-Speed TDM Signals , 2002 .

[120]  S. Radic,et al.  Limitations in dense bidirectional transmission in absence of optical amplification , 2002, IEEE Photonics Technology Letters.

[121]  Herbert G. Winful,et al.  On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification , 2002, Optical Fiber Communication Conference and Exhibit.

[122]  Joseph M. Kahn,et al.  Channel capacity of WDM systems using constant-intensity modulation formats , 2002, Optical Fiber Communication Conference and Exhibit.

[123]  P. Winzer,et al.  Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering , 2002, IEEE Photonics Technology Letters.

[124]  Jau Tang The channel capacity of a multispan DWDM system employing dispersive nonlinear optical fibers and an ideal coherent optical receiver , 2002 .

[125]  Sergio Verdú,et al.  Spectral efficiency in the wideband regime , 2002, IEEE Trans. Inf. Theory.

[126]  E. Desurvire A quantum model for optically amplified nonlinear transmission systems , 2002 .

[127]  Kiyoshi Fukuchi Wideband and ultra-dense WDM transmission technologies toward over 10-Tb/s capacity , 2002, Optical Fiber Communication Conference and Exhibit.

[128]  E. Desurvire A Common Quantum Noise Model for Optical Amplification and Nonlinearity in WDM Transmission , 2002, 2002 28TH European Conference on Optical Communication.

[129]  Emmanuel Desurvire,et al.  Erbium-Doped Fiber Amplifiers, Device and System Developments , 2002 .

[130]  Feasibility of hybrid Raman/EDFA amplification in bidirectional optical transmission , 2002, IEEE Photonics Technology Letters.

[131]  H. Winful,et al.  Optimizing the noise performance of broad-band WDM systems with distributed Raman amplification , 2002, IEEE Photonics Technology Letters.

[132]  J. Lee,et al.  Estimation of performance degradation of bidirectional WDM transmission systems due to Rayleigh backscattering and ASE noises using numerical and analytical models , 2003 .

[133]  K. Turitsyn,et al.  Information capacity of optical fiber channels with zero average dispersion. , 2003, Physical review letters.

[134]  S. Chandrasekhar,et al.  Forward error correction performance in the presence of Rayleigh-dominated transmission noise , 2003, IEEE Photonics Technology Letters.

[135]  S. Chandrasekhar,et al.  Impact of filtering on RZ-DPSK reception , 2003, IEEE Photonics Technology Letters.

[136]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[137]  Gerhard Kramer,et al.  Spectral efficiency of coded phase-shift keying for fiber-optic communication , 2003 .

[138]  Peter J. Winzer Optical Transmitters, Receivers, and Noise , 2003 .

[139]  S. Radic,et al.  Dual-order Raman pump , 2003, IEEE Photonics Technology Letters.

[140]  P. Sillard,et al.  Advance in long-haul fibers , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[141]  G. Agrawal Lightwave Technology: Components and Devices , 2004 .

[142]  J. Bromage Raman amplification for fiber communications systems , 2003, Journal of Lightwave Technology.

[143]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[144]  P. Winzer,et al.  Multiple Path Interference and Its Impact on System Design , 2004 .

[145]  Shu Lin,et al.  Error Control Coding , 2004 .

[146]  P. Littlewood,et al.  The effect of propagation nonlinearities on the information capacity of WDM optical fiber systems: cross-phase modulation and four-wave mixing , 2004 .

[147]  S. Banerjee,et al.  All-Raman ultralong-haul single-wideband DWDM transmission systems with OADM capability , 2004, Journal of Lightwave Technology.

[148]  Daniel J. Costello,et al.  Error Control Coding, Second Edition , 2004 .

[149]  A. Gnauck,et al.  Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission , 2004, IEEE Photonics Technology Letters.

[150]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[151]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[152]  L. Gruner-Nielsen,et al.  Dispersion-compensating fibers , 2000, Journal of Lightwave Technology.

[153]  A.H. Gnauck,et al.  Optical phase-shift-keyed transmission , 2005, Journal of Lightwave Technology.

[154]  Eduard Säckinger Broadband Circuits for Optical Fiber Communication: Säckinger/Broadband , 2005 .

[155]  Andreas F. Molisch,et al.  Wireless Communications , 2005 .

[156]  I. Djordjevic,et al.  Achievable information rates for high-speed long-haul optical transmission , 2005, Journal of Lightwave Technology.

[157]  E. Sackinger,et al.  Broadband Circuits for Optical Fiber Communication , 2005 .

[158]  Govind P. Agrawal,et al.  Lightwave technology : telecommunication systems , 2005 .

[159]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[160]  P. J. Winzer,et al.  Fibre nonlinearities in electronically pre-distorted transmission , 2005 .

[161]  R.-J. Essiambre,et al.  Coherent crosstalk in ultradense WDM systems , 2005, Journal of Lightwave Technology.

[162]  G. Agrawal,et al.  Raman amplification in fiber optical communication systems , 2005 .

[163]  M. Nishimura Optical fibers and fiber dispersion compensators for high-speed optical communication , 2005 .

[164]  R. Egorov,et al.  Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[165]  P. Winzer,et al.  Electronic predistortion and fiber nonlinearity , 2006, IEEE Photonics Technology Letters.

[166]  T. Mizuochi,et al.  Recent progress in forward error correction and its interplay with transmission impairments , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[167]  S. Bigo Modelling of WDM terrestrial and submarine links for the design of WDM networks , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[168]  P.J. Winzer,et al.  107-gb/s optical signal generation using electronic time-division multiplexing , 2006, Journal of Lightwave Technology.

[169]  Paul H. Siegel,et al.  On the Multiuser Capacity of WDM in a Nonlinear Optical Fiber: Coherent Communication , 2006, IEEE Transactions on Information Theory.

[170]  Biswanath Mukherjee,et al.  Optical WDM Networks , 2006 .

[171]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[172]  S. Turitsyn,et al.  Quasi-lossless optical links for broad-band transmission and data processing , 2006, IEEE Photonics Technology Letters.

[173]  J. Gordon,et al.  Solitons in Optical Fibers: Fundamentals and Applications , 2006 .

[174]  Peter J. Winzer,et al.  Advanced Optical Modulation Formats , 2006, Proceedings of the IEEE.

[175]  Bane V. Vasic,et al.  Calculation of Achievable Information Rates of Long-Haul Optical Transmission Systems Using Instanton Approach , 2007, Journal of Lightwave Technology.

[176]  D. Caplan Laser communication transmitter and receiver design , 2007 .

[177]  Ting Wang,et al.  17 Tb/s (161×114 Gb/s) PolMux-RZ-8PSK transmission over 662 km of ultra-low loss fiber using C-band EDFA amplification and digital coherent detection , 2008, 2008 34th European Conference on Optical Communication.

[178]  J. M. Simmons,et al.  Optical Network Design and Planning , 2008 .

[179]  A. Al Amin,et al.  8×66.8-Gbit/s coherent PDM-OFDM transmission over 640 km of SSMF at 5.6-bit/s/Hz spectral efficiency , 2008, 2008 34th European Conference on Optical Communication.

[180]  Sethumadhavan Chandrasekhar,et al.  Self-coherent optical transport systems , 2008 .

[181]  P. Winzer,et al.  High spectral efficiency modulation for high capacity transmission , 2008, 2008 Digest of the IEEE/LEOS Summer Topical Meetings.

[182]  R.H. Walden Analog-to-Digital Converters and Associated IC Technologies , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.

[183]  Gerhard Kramer,et al.  Capacity limits of information transport in fiber-optic networks. , 2008, Physical review letters.

[184]  Gerhard Kramer,et al.  The Capacity of Fiber-Optic Communication Systems , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[185]  R. Gallager Principles of Digital Communication , 2008 .

[186]  Takashi Mizuochi Next Generation FEC for Optical Communication , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[187]  Peter J. Winzer,et al.  Exploring capacity limits of fibre-optic mommunication systems , 2008, 2008 34th European Conference on Optical Communication.

[188]  A. Gnauck,et al.  112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid , 2008, 2008 34th European Conference on Optical Communication.

[189]  G. Kramer,et al.  Fiber Capacity Limits With Optimized Ring Constellations , 2009, IEEE Photonics Technology Letters.

[190]  Peter J. Winzer,et al.  Modulation and multiplexing in optical communication systems , 2009 .

[191]  Peter J. Winzer,et al.  Capacity Limits of Fiber-Optic Communication Systems , 2009, OFC 2009.

[192]  Emmanuel Desurvire,et al.  Classical and Quantum Information Theory: Quantum information theory , 2009 .

[193]  Chongjin Xie Suppression of inter-channel nonlinearities in WDM coherent PDMQPSK systems using periodic-group-delay dispersion compensators , 2009, 2009 35th European Conference on Optical Communication.

[194]  P. J. Winzer,et al.  10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[195]  P. M. Grant,et al.  Digital communications. 3rd ed , 2009 .

[196]  Itsuro Morita,et al.  DWDM transmission with 7.0-bit/s/Hz spectral efficiency using 8×65.1-Gbit/s coherent PDM-OFDM signals , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[197]  Ting Wang,et al.  On the channel capacity of multilevel modulation schemes with coherent detection , 2009, 2009 Asia Communications and Photonics conference and Exhibition (ACP).

[198]  Amos Lapidoth,et al.  A Foundation In Digital Communication: Index , 2009 .

[199]  Ivan B. Djordjevic Ultimate information capacity of fiber-optic networks , 2010, OPTO.

[200]  M. Sauer,et al.  Stimulated Brillouin scattering in optical fibers , 2010 .

[201]  Robert W. Tkach,et al.  Scaling optical communications for the next decade and beyond , 2010, Bell Labs Technical Journal.

[202]  Herbert Haunstein,et al.  OFDM spectral efficiency limits from fiber and system non-linearities , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[203]  Ivan P. Kaminow,et al.  Optical Fiber Telecommunications IIIA: Third Edition , 2012 .