Matrices for natural-fibre reinforced composites

Publisher Summary Composite materials are the most advanced and adaptable engineering materials. A composite is a heterogeneous material created by the synthetic assembly of two or more components constituting a reinforcing matrix and a compatible matrix in order to obtain specific characteristics and properties. The matrix may be metallic, ceramic or polymeric in origin. The matrix gives a composite its shape, surface appearance, environmental tolerance and overall durability while the fibrous reinforcement carries most of the structural loads, thus giving macroscopic stiffness and strength. Natural-fibre reinforced composites offer a good mechanical performance and eco-friendliness. The application of natural-fibre-based composites is increasing rapidly. This is especially related to certain problems concerning the use of synthetic fibre reinforced composites. Natural fibres such as flax, hemp, banana, sisal, oil palm and jute have a number of techno-economical and ecological advantages over synthetic fibres such as glass fibres. The combination of interesting mechanical and physical properties together with their environmentally friendly character has aroused interest in a number of industrial sectors, notably the automotive industry. This chapter discusses the advantages and disadvantages of using natural fibres in composites.

[1]  Sabu Thomas,et al.  Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites , 2003 .

[2]  Sabu Thomas,et al.  Short sisal fibre reinforced natural rubber composites: high-energy radiation, thermal and ozone degradation , 1994 .

[3]  Sabu Thomas,et al.  Mechanical properties of pineapple leaf fiber‐reinforced polyester composites , 1997 .

[4]  Sabu Thomas,et al.  Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre , 1998 .

[5]  Faleh A. Al-Sulaiman,et al.  Mechanical Properties of Date Palm Fiber Reinforced Composites , 2002 .

[6]  E. Mäder,et al.  Interphase characterization in composites with new non-destructive methods , 1998 .

[7]  Zachariah Oommen,et al.  A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres , 2002 .

[8]  C. Joly,et al.  Partial masking of cellulosic fiber hydrophilicity for composite applications. Water sorption by chemically modified fibers , 1996 .

[9]  S. Monteiro,et al.  Flexural mechanical properties of piassava fibers (Attalea funifera)- resin matrix composites , 2001 .

[10]  S. M. Sapuan,et al.  Mechanical properties of woven banana fibre reinforced epoxy composites , 2006 .

[11]  Sabu Thomas,et al.  Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites , 2003 .

[12]  C. Baillie,et al.  An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR , 2003 .

[13]  S. Eichhorn,et al.  Deformation micromechanics of natural cellulose fibre networks and composites , 2003 .

[14]  L. Visconte,et al.  Mechanical and dynamic mechanical properties of rice husk ash–filled natural rubber compounds , 2002 .

[15]  C. Baillie,et al.  Interfacial characterisation of flax fibre‐thermoplastic polymer composites by the pull‐out test , 1999 .

[16]  P. Hornsby,et al.  Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II Analysis of composite microstructure and mechanical properties , 1997 .

[17]  Paul Gatenholm,et al.  The nature of adhesion in composites of modified cellulose fibers and polypropylene , 1991 .

[18]  N. K. Sinha,et al.  Stress relaxation at high temperatures and the role of delayed elasticity , 2005 .

[19]  Sabu Thomas,et al.  Improved interactions in chemically modified pineapple leaf fiber reinforced polyethylene composites , 1997 .

[20]  Anil N. Netravali,et al.  Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced ‘green’ composites , 2005 .

[21]  Andrzej K. Bledzki,et al.  Possibilities to Improve the Properties of Natural Fiber Reinforced Plastics by Fiber Modification – Jute Polypropylene Composites – , 2000 .

[22]  T. Fujimaki Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction , 1998 .

[23]  R. Shanks,et al.  Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization , 2006 .

[24]  Sabu Thomas,et al.  Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites , 1999 .

[25]  J. L. Willett,et al.  Aging and moisture effects on the tensile properties of starch/poly(hydroxyester ether) composites† , 2006 .

[26]  Sabu Thomas,et al.  Dynamic mechanical properties of oil palm fiber/phenol formaldehyde and oil palm fiber/glass hybrid phenol formaldehyde composites , 2005 .

[27]  A. Netravali,et al.  Characterization of Phytagel® modified soy protein isolate resin and unidirectional flax yarn reinforced “green” composites , 2005 .

[28]  P. Sáha,et al.  Study on biodegradability of protein filled polymer composites using dielectric measurements , 2004 .

[29]  V. Dupres,et al.  Atomic force microscopy imaging of hair: correlations between surface potential and wetting at the nanometer scale. , 2004, Journal of colloid and interface science.

[30]  A. Rana,et al.  Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading , 2003 .

[31]  Sabu Thomas,et al.  Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers , 1997 .

[32]  Kristiina Oksman,et al.  Morphology and mechanical properties of unidirectional sisal-epoxy composites , 2002 .

[33]  Anil N. Netravali,et al.  ‘Green’ composites using cross-linked soy flour and flax yarns , 2005 .

[34]  Xiaowen Yuan,et al.  Plasma treatment of sisal fibres and its effects on tensile strength and interfacial bonding , 2002 .

[35]  A. Rana,et al.  The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres , 2001 .

[36]  Peter Jezzard,et al.  Demonstration of nuclear magnetic resonance imaging for void detection in carbon-fibre reinforced polymer composites, and comparison with ultrasound methods , 1992, Journal of Materials Science.

[37]  E. Martuscelli,et al.  Reactive blending methodologies for biopol , 1996 .

[38]  R. Shanks,et al.  Interfacial improvements in poly(3-hydroxybutyrate)-flax fibre composites with hydrogen bonding additives , 2004 .

[39]  E. García-Hernández,et al.  Improvement of the interfacial compatibility between sugar cane bagasse fibers and polystyrene for composites , 2004 .

[40]  M. Shibata,et al.  Biodegradation of aliphatic polyester composites reinforced by abaca fiber , 2004 .

[41]  Anil N. Netravali,et al.  Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber , 2002 .

[42]  I. Mondragon,et al.  Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites , 2003 .

[43]  M. Semsarzadeh,et al.  Fiber matrix interactions in jute reinforced polyester resin , 1986 .

[44]  Sabu Thomas,et al.  Mechanical properties of short sisal fiber-reinforced polypropylene composites: Comparison of experimental data with theoretical predictions , 2003 .

[45]  M. Misra,et al.  Biobased resin as a toughening agent for biocomposites , 2004 .

[46]  Sabu Thomas,et al.  Dynamical mechanical analysis of sisal/oil palm hybrid fiber‐reinforced natural rubber composites , 2006 .

[47]  M. Mochizuki,et al.  Structural Effects on the Biodegradation of Aliphatic Polyesters , 1997 .

[48]  C. Albano,et al.  Thermal stability of blends of polyolefins and sisal fiber , 1999 .

[49]  A. Curvelo,et al.  Wood pulp reinforced thermoplastic starch composites , 2002 .

[50]  J. Vincent,et al.  The manufacture and mechanical testing of thermosetting natural fibre composites , 2000 .

[51]  S. M. Sapuan,et al.  Mechanical properties of pineapple leaf fibre reinforced polypropylene composites , 2006 .

[52]  B. Singh,et al.  Influence of fiber surface treatment on the properties of sisal-polyester composites , 1996 .

[53]  Robert J. Williams,et al.  Thermolysis and Methanolysis of Poly(.beta.-hydroxybutyrate): Random Scission Assessed by Statistical Analysis of Molecular Weight Distributions , 1995 .

[54]  A. Błędzki,et al.  Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres , 1999 .

[55]  M. Arroyo,et al.  Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer , 2003 .

[56]  Sabu Thomas,et al.  Influence of short pineapple fiber on the viscoelastic properties of low-density polyethylene , 1993 .

[57]  D. K. Tripathy,et al.  Stress relaxation in short jute fiber‐reinforced nitrile rubber composites , 1987 .

[58]  M. Scandola,et al.  Biodegradable polyesters reinforced with surface-modified vegetable fibers. , 2004, Macromolecular bioscience.

[59]  Seung‐Hwan Lee,et al.  Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent , 2006 .

[60]  R. Marchessault,et al.  Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate) , 1986 .

[61]  Sabu Thomas,et al.  Natural rubber composites reinforced with sisal/oil palm hybrid fibers: Tensile and cure characteristics , 2004 .

[62]  C. Hill,et al.  The effect of environmental exposure upon the mechanical properties of coir or oil palm fiber reinforced composites , 2000 .

[63]  P. Wambua,et al.  Natural fibres: can they replace glass in fibre reinforced plastics? , 2001 .

[64]  S. Nayak,et al.  Novel, low‐cost jute‐polyester composites. Part 1: Processing, mechanical properties, and SEM analysis , 1999 .

[65]  M. Wolcott,et al.  Interfacial contributions in lignocellulosic fiber-reinforced polyurethane composites , 2001 .

[66]  I. Mondragon,et al.  Mechanical properties of short flax fibre bundle/poly(ε-caprolactone) composites: Influence of matrix modification and fibre content , 2006 .

[67]  D. Fontanelli,et al.  Mechanical properties of jute fibers and interface strength with an epoxy resin , 2000 .

[68]  Sabu Thomas,et al.  Influence of chemical treatments on the electrokinetic properties of cellulose fibres , 2002 .

[69]  M. Reboredo,et al.  Moisture diffusion in polyester–woodflour composites , 1999 .

[70]  B. Kos̆iková,et al.  Role of lignin filler in stabilization of natural rubber–based composites , 2007 .

[71]  H. Wariishi,et al.  Composite sheets with biodegradable polymers and paper, the effect of paper strengthening agents on strength enhancement, and an evaluation of biodegradability , 2005 .

[72]  A. Gandini,et al.  Surface characterization of cellulose fibres by XPS and inverse gas chromatography , 1995 .

[73]  Sabu Thomas,et al.  Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites. , 2005, Biomacromolecules.

[74]  L. Mathias,et al.  New lightweight materials: Balsa wood‐polymer composites based on ethyl α‐(hydroxymethyl)acrylate , 1993 .

[75]  Martin P. Ansell,et al.  The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites , 1991 .

[76]  Sabu Thomas,et al.  The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites , 2006 .

[77]  G. Kraus Swelling of filler‐reinforced vulcanizates , 1963 .

[78]  M. Ansell,et al.  Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization , 2002 .

[79]  C. Panayiotou,et al.  Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour , 2006 .

[80]  W. B. Pedersen,et al.  Biodegradable composites based on l-polylactide and jute fibres , 2003 .

[81]  Luiz H. C. Mattoso,et al.  Short sisal fiber‐reinforced tire rubber composites: Dynamic and mechanical properties , 2004 .

[82]  Sabu Thomas,et al.  Oil Palm Fibre Reinforced Phenol Formaldehyde Composites: Influence of Fibre Surface Modifications on the Mechanical Performance , 2000 .

[83]  M. Shibata,et al.  Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric , 2004 .

[84]  I. Arvanitoyannis,et al.  Synthesis and study of novel biodegradable oligo(ester amide)s based on sebacic acid, octadecanedioic acid, 1,6-hexanediamine and ɛ-caprolactone: 2 , 1995 .

[85]  Manjusri Misra,et al.  The influence of fibre treatment on the performance of coir-polyester composites , 2001 .

[86]  L. Avérous,et al.  Biocomposites based on plasticized starch: thermal and mechanical behaviours , 2004 .

[87]  S. V. Wong,et al.  Fatigue behaviour of oil palm fruit bunch fibre/epoxy and carbon fibre/ epoxy composites , 2005 .

[88]  Stephen J. Eichhorn,et al.  Composite micromechanics of hemp fibres and epoxy resin microdroplets , 2004 .

[89]  Satyendra Mishra,et al.  The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites , 2000 .

[90]  V. Hristov,et al.  Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites , 2003 .

[91]  X. Colom,et al.  Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites , 2003 .

[92]  Robert J. Williams,et al.  Thermal Degradation of Bacterial Poly(hydroxybutyric acid): Mechanisms from the Dependence of Pyrolysis Yields on Sample Thickness , 1994 .

[93]  Anil N. Netravali,et al.  Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin , 1999 .

[94]  Z. Ishak,et al.  Modification of oil palm empty fruit bunches with maleic anhydride: The effect on the tensile and dimensional stability properties of empty fruit bunch/polypropylene composites , 2003 .

[95]  A. Hammami,et al.  Date palm fibers as polymeric matrix reinforcement: Fiber characterization , 2005 .

[96]  Sabu Thomas,et al.  A study of the mechanical properties of randomly oriented short banana and sisal hybrid fiber reinforced polyester composites , 2005 .

[97]  M. Rong,et al.  The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites , 2001 .

[98]  Sabu Thomas,et al.  Determination of polarity parameters of chemically modified cellulose fibers by means of the solvatochromic technique , 2000 .

[99]  H. Hamada,et al.  A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns , 2006 .

[100]  C. Pavithran,et al.  Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites , 1997 .

[101]  Y. Doi,et al.  Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate , 1988 .

[102]  V. S. Prasad,et al.  The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites , 2003 .

[103]  B. Stenberg,et al.  An indirect method which ranks the adhesion in natural rubber filled with different types of cellulose fibres by plots of E(t)/Et=0 versus log t , 1990 .

[104]  Shinji Ochi,et al.  Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin , 2006 .

[105]  A. Zadhoush,et al.  Physicomechanical properties of α‐cellulose–filled styrene–butadiene rubber composites , 2005 .

[106]  B. Kokta,et al.  Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene–wood fiber composites , 1989 .

[107]  M. Sain,et al.  Polyolefin–wood filler composite. I. Performance of m‐phenylene bismaleimide‐modified wood fiber in polypropylene composite , 1994 .

[108]  Wanjun Liu,et al.  Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites , 2004 .

[109]  M. Shibata,et al.  Biocomposites Made from Short Abaca Fiber and Biodegradable Polyesters , 2003 .

[110]  Sabu Thomas,et al.  Electrical properties of natural‐fiber‐reinforced low density polyethylene composites: A comparison with carbon black and glass‐fiber‐filled low density polyethylene composites , 1997 .

[111]  Roberto Olayo,et al.  Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites , 1999 .

[112]  R. Li,et al.  Thermal and mechanical properties of biodegradable composites of poly(propylene carbonate) and starch–poly(methyl acrylate) graft copolymer , 2005 .

[113]  Zachariah Oommen,et al.  Dynamic mechanical analysis of banana fiber reinforced polyester composites , 2003 .

[114]  Sabu Thomas,et al.  The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres , 2002 .

[115]  Sabu Thomas,et al.  Morphology and melt rheological behaviour of short-sisal-fibre-reinforced SBR composites , 2000 .

[116]  Sabu Thomas,et al.  Stress relaxation in short sisal‐fiber‐reinforced natural rubber composites , 1994 .

[117]  Sabu Thomas,et al.  Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites , 1996 .

[118]  M. Ansell,et al.  The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement , 1999 .

[119]  L. Jong Characterization of soy protein/styrene–butadiene rubber composites , 2005 .

[120]  L. Mattoso,et al.  Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics , 2005 .

[121]  A. Kalam,et al.  On the study of indigenous natural-fibre composites , 1974 .

[122]  R. Coutts,et al.  Banana fibre strands reinforced polyester composites , 1995 .

[123]  D. Bhattacharyya,et al.  Forming performance and biodegradability of woodfibre–Biopol™ composites , 2002 .

[124]  A. McDonald,et al.  The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites , 2003 .

[125]  Seung-Hwan Lee,et al.  Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites , 2006 .

[126]  Martin P. Ansell,et al.  Modified polyester resins for natural fibre composites , 2005 .

[127]  M. Tavares,et al.  Impact behavior of sugarcane bagasse waste–EVA composites , 2001 .

[128]  A. Rajulu,et al.  Tensile properties of natural fabric Hildegardia populifolia/polycarbonate toughened epoxy composites , 2004 .

[129]  A. Mohanty,et al.  Characterization of several modified jute fibers using zeta-potential measurements , 2000 .

[130]  G. Hinrichsen,et al.  Flax and cotton fiber reinforced biodegradable polyester amide composites, 2. Characterization of biodegradation , 1999 .

[131]  I. Verpoest,et al.  Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment , 2006 .

[132]  Sabu Thomas,et al.  Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites , 1996 .

[133]  Sabu Thomas,et al.  Tensile properties of short sisal fiber reinforced polystyrene composites , 1996 .

[134]  S. Amico,et al.  Pull-out and other evaluations in sisal-reinforced polyester biocomposites , 2003 .

[135]  Y. Doi,et al.  Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) , 1989 .

[136]  Jang‐Kyo Kim,et al.  Nanoscale characterisation of thickness and properties of interphase in polymer matrix composites , 2003 .

[137]  R. Koch,et al.  BAR 1095 and BAK 2195: completely biodegradable synthetic thermoplastics , 1998 .

[138]  Manjusri Misra,et al.  ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation , 2005 .

[139]  Joung-Man Park,et al.  Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-l-lactide composites using micromechanical test and nondestructive acoustic emission , 2003 .

[140]  Yongli Mi,et al.  Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties , 1998 .

[141]  V. G. Geethamma,et al.  Short coir fiber‐reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment , 1995 .

[142]  Yuji Imamura,et al.  Biodegradable composites from waste wood and poly(vinyl alcohol) , 2005 .

[143]  A. Hammami,et al.  Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties , 2005 .

[144]  U. Ishiaku,et al.  Oil Palm Fibre‐reinforced Rubber Composite: Effects of Concentration and Modification of Fibre Surface , 1997 .

[145]  S. K. Malhotra,et al.  Effect of layering pattern on dynamic mechanical properties of randomly oriented short banana/sisal hybrid fiber-reinforced polyester composites , 2005 .

[146]  L. A. Pothan,et al.  XPS studies of chemically modified banana fibers. , 2006, Biomacromolecules.

[147]  Costas Panayiotou,et al.  Development of biodegradable composites with treated and compatibilized lignocellulosic fibers , 2006 .

[148]  B. B. Panda,et al.  Effect of chemical modification on FTIR spectra. I. Physical and chemical behavior of coir , 1995 .

[149]  Sabu Thomas,et al.  Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites , 2005 .

[150]  Sabu Thomas,et al.  Short sisal fiber reinforced styrene‐butadiene rubber composites , 1995 .

[151]  L. Visconte,et al.  The effect of coupling agent and chemical treatment on rice husk ash‐ filled natural rubber composites , 2000 .

[152]  J. Hodgkinson,et al.  Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface , 2002 .

[153]  V. G. Geethamma,et al.  Tensile stress relaxation of short‐coir‐fiber‐reinforced natural rubber composites , 2004 .

[154]  P. Kiekens,et al.  Influence of Fiber Surface Characteristics on the Flax/Polypropylene Interface , 2001 .

[155]  I. Fukumoto,et al.  Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments , 2006 .

[156]  T. Gowda,et al.  Some mechanical properties of untreated jute fabric-reinforced polyester composites , 1999 .

[157]  V. Coma,et al.  Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains , 2006 .

[158]  R. Joseph,et al.  Isora Fibres and their Composites with Natural Rubber , 2004 .

[159]  Sabu Thomas,et al.  Influence of Short Glass Fiber Addition on the Mechanical Properties of Sisal Reinforced Low Density Polyethylene Composites , 1997 .

[160]  J. D. Sudha,et al.  Studies on fly‐ash‐filled natural rubber modified with cardanol derivatives: Processability, mechanical properties, fracture morphology, and thermal decomposition characteristics , 2006 .

[161]  T. Endo,et al.  Novel enzymatically degradable polymers comprising α-amino acid, 1,2-ethanediol, and adipic acid , 1991 .

[162]  S. Prasad,et al.  Sunhemp fibre-reinforced polyester , 1986 .

[163]  P. Bataille,et al.  Effects of cellulose fibers in polypropylene composites , 1989 .

[164]  K. Oksman,et al.  The Effect of Morphology and Chemical Characteristics of Cellulose Reinforcements on the Crystallinity of Polylactic Acid , 2006 .

[165]  I. Mondragon,et al.  Surface modification of sisal fibers: Effects on the mechanical and thermal properties of their epoxy composites , 2005 .

[166]  M. Misra,et al.  The influence of chemical surface modification on the performance of sisal‐polyester biocomposites , 2002 .

[167]  A. Mohanty,et al.  Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites , 2000 .

[168]  Jong-Shin Huang,et al.  Stress Relaxation of Cellular Materials , 2005 .

[169]  Lihui Weng,et al.  Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. , 2005, Macromolecular bioscience.

[170]  R. Olayo,et al.  Chemical modification of henequén fibers with an organosilane coupling agent , 1999 .

[171]  C. Viney,et al.  Evaluating the silk/epoxy interface by means of the Microbond Test , 2000 .

[172]  A. S. Luyt,et al.  Effect of alkali treatment on the flexural properties of Hildegardia fabric composites , 2006 .

[173]  Amar K. Mohanty,et al.  Potentiality of Pineapple Leaf Fibre as Reinforcement in PALF-Polyester Composite: Surface Modification and Mechanical Performance , 2001 .

[174]  M. Skrifvars,et al.  Natural fibres as reinforcement in polylactic acid (PLA) composites , 2003 .

[175]  Martin P. Ansell,et al.  The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix , 2004 .

[176]  S. Das,et al.  Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres , 2002 .

[177]  I. Fukumoto,et al.  Effects of fiber compression and length distribution on the flexural properties of short kenaf fiber‐reinforced biodegradable composites , 2006 .

[178]  W. Diepenbrock,et al.  Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[179]  J. Naik,et al.  Absorption of Water at Ambient Temperature and Steam in Wood-Polymer Composites Prepared from Agrowaste and Polystyrene , 1998 .

[180]  K. T. Mathew,et al.  Composite of short coir fibres and natural rubber : effect of chemical modification, loading and orientation of fibre , 1998 .

[181]  E. Chiellini,et al.  Composite films based on waste gelatin: thermal–mechanical properties and biodegradation testing , 2001 .

[182]  Sabu Thomas,et al.  Mechanical and viscoelastic properties of short fiber reinforced natural rubber composites: effects of interfacial adhesion, fiber loading, and orientation , 1994 .

[183]  Tomoo Suzuki,et al.  Hydrolysis of polyesters by lipases , 1977, Nature.

[184]  T. Endo,et al.  Enzymatic Degrading Solubilization of a Polymer Comprising Glycine, Phenylalanine, 1,2-Ethanediol, and Adipic Acid , 1991 .