Tracing cluster transitions for different cluster types

Clustering algorithms detect groups of similar pop- ulation members, like customers, news or genes. In many cluster- ing applications the observed population evolves and changes over time, subject to internal and external factors. Detecting and under- standing changes is important for decision support. In this work, we present the MONIC + framework for cluster-type-specific transi- tion modeling and detection. MONIC + encompasses a typification of clusters and cluster-type-specific transition indicators, by exploit- ing cluster topology and cluster statistics for the transition detec- tion process. Our experiments on both synthetic and real datasets demonstrate the usefulness and applicability of our framework. Keywords: dynamic environments, change detection, cluster transitions, transition indicators, cluster-type-specific indicators.

[1]  Myra Spiliopoulou,et al.  Efficient Monitoring of Patterns in Data Mining Environments , 2003, ADBIS.

[2]  Setsuo Ohsuga,et al.  INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES , 1977 .

[3]  Srinivasan Parthasarathy,et al.  A generalized framework for mining spatio-temporal patterns in scientific data , 2005, KDD '05.

[4]  Johannes Gehrke,et al.  DEMON: mining and monitoring evolving data , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[5]  Marina Meila,et al.  Comparing Clusterings by the Variation of Information , 2003, COLT.

[6]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[7]  Sudipto Guha,et al.  Streaming-data algorithms for high-quality clustering , 2002, Proceedings 18th International Conference on Data Engineering.

[8]  Marina MeWi Comparing Clusterings , 2002 .

[9]  Charu C. Aggarwal,et al.  On change diagnosis in evolving data streams , 2005, IEEE Transactions on Knowledge and Data Engineering.

[10]  Nikos Pelekis,et al.  Pattern Comparison in Data Mining: A Survey , 2007 .

[11]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[12]  ChengXiang Zhai,et al.  Discovering evolutionary theme patterns from text: an exploration of temporal text mining , 2005, KDD '05.

[13]  Satoshi Morinaga,et al.  Tracking dynamics of topic trends using a finite mixture model , 2004, KDD.

[14]  Yannis Theodoridis,et al.  A Unified and Flexible Framework for Comparing Simple and Complex Patterns , 2004, PKDD.

[15]  James Allan,et al.  Introduction to topic detection and tracking , 2002 .

[16]  Hongyuan Zha,et al.  A new Mallows distance based metric for comparing clusterings , 2005, ICML '05.

[17]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[18]  Johannes Gehrke,et al.  A framework for measuring changes in data characteristics , 1999, PODS '99.

[19]  James Allan,et al.  Topic detection and tracking: event-based information organization , 2002 .

[20]  Myra Spiliopoulou,et al.  MONIC: modeling and monitoring cluster transitions , 2006, KDD '06.

[21]  Hans-Peter Kriegel,et al.  Incremental Clustering for Mining in a Data Warehousing Environment , 1998, VLDB.

[22]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .