Euclidean distance matrices, semidefinite programming and sensor network localization

The fundamental problem of distance geometry involves the characterization and study of sets of points based only on given values of some or all of the distances between pairs of points. This problem has a wide range of applications in various areas of mathe- matics, physics, chemistry, and engineering. Euclidean distance matrices play an important role in this context by providing elegant and powerful convex relaxations. They play an important role in problems such as graph realization and graph rigidity. Moreover, by relaxing the embedding dimension restriction, these matrices can be used to approximate the hard problems e‰ciently using semidefinite programming. Throughout this survey we emphasize the interplay between these concepts and problems. In addition, we illustrate this interplay in the context of the sensor network localization problem.

[1]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[2]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[3]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[4]  D. Gale 15. Neighboring Vertices on a Convex Polyhedron , 1957 .

[5]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[6]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[7]  B. Roth,et al.  The rigidity of graphs , 1978 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[10]  R. Connelly Rigidity and energy , 1982 .

[11]  L. Lovász,et al.  On Generic Rigidity in the Plane , 1982 .

[12]  J. Gower Euclidean Distance Geometry , 1982 .

[13]  J. Gower Properties of Euclidean and non-Euclidean distance matrices , 1985 .

[14]  Fuzhen Zhang,et al.  On the Best Euclidean Fit to a Distance Matrix , 1987 .

[15]  R. Farebrother Three theorems with applications to euclidean distance matrices , 1987 .

[16]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[17]  B. Hendrickson The Molecular Problem: Determining Conformation from Pairwise Distances , 1990 .

[18]  W. Glunt,et al.  An alternating projection algorithm for computing the nearest euclidean distance matrix , 1990 .

[19]  Robert Connelly On Generic Global Rigidity , 1990, Applied Geometry And Discrete Mathematics.

[20]  Wei-Min Liu,et al.  The cone of distance matrices , 1991 .

[21]  Gordon M. Crippen,et al.  Chemical distance geometry: Current realization and future projection , 1991 .

[22]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[23]  Walter Whiteley Matroid Applications: Matroids and Rigid Structures , 1992 .

[24]  R. Connelly In Handbook of Convex Geometry , 1993 .

[25]  Jorge J. Moré,et al.  E-optimal solutions to distance geometry problems via global continuation , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[26]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[27]  V. Ferrario,et al.  A three-dimensional evaluation of human facial asymmetry. , 1995, Journal of anatomy.

[28]  Charles R. Johnson,et al.  Connections between the real positive semidefinite and distance matrix completion problems , 1995 .

[29]  R. Fletcher,et al.  Hybrid Methods for Finding the Nearest Euclidean Distance Matrix , 1995 .

[30]  Charles R. Johnson,et al.  The Euclidian Distance Matrix Completion Problem , 1995, SIAM J. Matrix Anal. Appl..

[31]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[32]  M. Trosset Computing Distances Between Convex Sets and Subsets of the Positive Semidefinite Matrices , 1997 .

[33]  Richard H. Byrd,et al.  A Stochastic/Perturbation Global Optimization Algorithm for Distance Geometry Problems , 1997, J. Glob. Optim..

[34]  Monique Laurent,et al.  Cuts, matrix completions and graph rigidity , 1997, Math. Program..

[35]  Michael W. Trosset,et al.  Applications of Multidimensional Scaling to Molecular Conformation , 1997 .

[36]  Henry Wolkowicz,et al.  Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..

[37]  Jorge J. Moré,et al.  Global Continuation for Distance Geometry Problems , 1995, SIAM J. Optim..

[38]  Henry Wolkowicz,et al.  An Interior-Point Method for Approximate Positive Semidefinite Completions , 1998, Comput. Optim. Appl..

[39]  M. Laurent A tour d’horizon on positive semidefinite and Euclidean distance matrix completion problems , 1998 .

[40]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[41]  J. Richtsmeier,et al.  Three-Dimensional Analysis of Craniofacial Form in a Familial Rabbit Model of Nonsyndromic Coronal Suture Synostosis Using Euclidean Distance Matrix Analysis , 1999 .

[42]  Jorge J. Moré,et al.  Distance Geometry Optimization for Protein Structures , 1999, J. Glob. Optim..

[43]  Zhijun Wu,et al.  Mathematical Modeling of Protein Structure Using Distance Geometry , 2000 .

[44]  Michael W. Trosset,et al.  Distance Matrix Completion by Numerical Optimization , 2000, Comput. Optim. Appl..

[45]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[46]  Chris Savarese LOCATIONING IN DISTRIBUTED AD-HOC WIRELESS SENSOR NETWORKS , 2001 .

[47]  Mani B. Srivastava,et al.  Dynamic fine-grained localization in Ad-Hoc networks of sensors , 2001, MobiCom '01.

[48]  L. El Ghaoui,et al.  Convex position estimation in wireless sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[49]  Panos M. Pardalos,et al.  Some Properties for the Euclidean Distance Matrix and Positive Semidefinite Matrix Completion Problems , 2003, J. Glob. Optim..

[50]  Timothy F. Havel Metric matrix embedding in protein structure calculations, NMR spectra analysis, and relaxation theory , 2003 .

[51]  S. Al-Homidan Hybrid Methods for Optimization Problems with Positive Semi-Definite Matrix Constraints , 2003 .

[52]  Qunfeng Dong,et al.  A Geometric Build-Up Algorithm for Solving the Molecular Distance Geometry Problem with Sparse Distance Data , 2003, J. Glob. Optim..

[53]  Brian D. O. Anderson,et al.  Rigidity, computation, and randomization in network localization , 2004, IEEE INFOCOM 2004.

[54]  Balázs Csanád Csáji,et al.  On the Automation of Similarity Information Maintenance in Flexible Query Answering Systems , 2004, DEXA.

[55]  John Blitzer,et al.  Hierarchical Distributed Representations for Statistical Language Modeling , 2004, NIPS.

[56]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[57]  Yinyu Ye,et al.  Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[58]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[59]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[60]  Holly Hui Jin,et al.  Scalable sensor localization algorithms for wireless sensor networks , 2005 .

[61]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[62]  H. Wolkowicz,et al.  Approximate and exact completion problems for Euclidean distance matrices using semidefinite programming , 2005 .

[63]  Kay Römer,et al.  Time synchronization and localization in sensor networks , 2005 .

[64]  Harold N. Gabow,et al.  Forests, frames, and games: Algorithms for matroid sums and applications , 1992, STOC '88.

[65]  Y. Ye,et al.  A Distributed Method for Solving Semidefinite Programs Arising from Ad Hoc Wireless Sensor Network Localization , 2006 .

[66]  Michael A. Saunders,et al.  SpaseLoc: An Adaptive Subproblem Algorithm for Scalable Wireless Sensor Network Localization , 2006, SIAM J. Optim..

[67]  Daniel Sang Kim,et al.  Sensor network localization based on natural phenomena , 2006 .

[68]  Kim-Chuan Toh,et al.  Semidefinite Programming Approaches for Sensor Network Localization With Noisy Distance Measurements , 2006, IEEE Transactions on Automation Science and Engineering.

[69]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Globally Linked Pairs of Vertices in Equivalent Realizations of Graphs Globally Linked Pairs of Vertices in Equivalent Realizations of Graphs , 2022 .

[70]  Alfred O. Hero,et al.  Distributed weighted-multidimensional scaling for node localization in sensor networks , 2006, TOSN.

[71]  H. Wolkowicz,et al.  Robust Semidenite Programming Approaches for Sensor Network Localization with Anchors , 2006 .

[72]  Yinyu Ye,et al.  Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.

[73]  Steven J. Gortler,et al.  Characterizing generic global rigidity , 2007, Ad Hoc Networks.

[74]  Robert Connelly,et al.  Realizability of Graphs , 2007, Discret. Comput. Geom..

[75]  Di Wu,et al.  An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data , 2003, J. Glob. Optim..

[76]  Paul Tseng,et al.  Second-Order Cone Programming Relaxation of Sensor Network Localization , 2007, SIAM J. Optim..

[77]  Abdo Y. Alfakih,et al.  On dimensional rigidity of bar-and-joint frameworks , 2007, Discret. Appl. Math..

[78]  Stephen P. Boyd,et al.  Further Relaxations of the Semidefinite Programming Approach to Sensor Network Localization , 2008, SIAM J. Optim..

[79]  Nathan Krislock,et al.  Sensor network localization, euclidean distance matrix completions, and graph realization , 2008, MELT '08.

[80]  Jon Dattorro,et al.  Equality relating Euclidean distance cone to positive semidefinite cone , 2008 .

[81]  Andrea Cassioli,et al.  Global Optimization of Highly Multimodal Problems , 2008 .

[82]  Sarfraz Nawaz Anchor free localization for ad-hoc wireless sensor networks , 2008 .

[83]  Kim-Chuan Toh,et al.  A Distributed SDP Approach for Large-Scale Noisy Anchor-Free Graph Realization with Applications to Molecular Conformation , 2008, SIAM J. Sci. Comput..

[84]  Michael B. Wakin,et al.  An Introduction To Compressive Sampling [A sensing/sampling paradigm that goes against the common knowledge in data acquisition] , 2008 .

[85]  Masakazu Kojima,et al.  User Manual for SFSDP: a Sparse Version of Full SemiDefinite Programming Relaxation for Sensor Network Localization Problems , 2009 .

[86]  Jiawang Nie,et al.  Sum of squares method for sensor network localization , 2006, Comput. Optim. Appl..

[87]  Nathan Krislock,et al.  Explicit Sensor Network Localization using Semidefinite Representations and Clique Reductions , 2009 .

[88]  Masakazu Kojima,et al.  Exploiting Sparsity in SDP Relaxation for Sensor Network Localization , 2009, SIAM J. Optim..

[89]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[90]  H. Wolkowicz,et al.  Sensor Network Localization, Euclidean Distance Matrix completions, and graph realization , 2006, MELT '08.

[91]  Paul Tseng,et al.  (Robust) Edge-based semidefinite programming relaxation of sensor network localization , 2011, Math. Program..

[92]  Ronald Raulefs,et al.  Cooperative Localization in Wireless Sensor Networks: Distributed Algorithms , 2013 .