Identification of local clusters for count data: a model-based Moran's I test

We set out I DR as a loglinear-model-based Moran's I test for Poisson count data that resembles the Moran's I residual test for Gaussian data. We evaluate its type I and type II error probabilities via simulations, and demonstrate its utility via a case study. When population sizes are heterogeneous, I DR is effective in detecting local clusters by local association terms with an acceptable type I error probability. When used in conjunction with local spatial association terms in loglinear models, I DR can also indicate the existence of first-order global cluster that can hardly be removed by local spatial association terms. In this situation, I DR should not be directly applied for local cluster detection. In the case study of St. Louis homicides, we bridge loglinear model methods for parameter estimation to exploratory data analysis, so that a uniform association term can be defined with spatially varied contributions among spatial neighbors. The method makes use of exploratory tools such as Moran's I scatter plots and residual plots to evaluate the magnitude of deviance residuals, and it is effective to model the shape, the elevation and the magnitude of a local cluster in the model-based test.

[1]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[2]  G. Lin,et al.  Loglinear Residual Tests of Moran's I Autocorrelation and their Applications to Kentucky Breast Cancer Data , 2007 .

[3]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[4]  S. Sheather,et al.  Testing for Spatial Correlation in Nonstationary Binary Data, with Application to Aberrant Crypt Foci in Colon Carcinogenesis , 2003, Biometrics.

[5]  A. Lawson,et al.  Adjusting Moran's I for population density. , 1996, Statistics in medicine.

[6]  G. Lin A Spatial Logit Association Model for Cluster Detection , 2003 .

[7]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[8]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[9]  R. Assunção,et al.  A new proposal to adjust Moran's I for population density. , 1999, Statistics in medicine.

[10]  S D Walter The analysis of regional patterns in health data. I. Distributional considerations. , 1992, American journal of epidemiology.

[11]  T Tango,et al.  A class of tests for detecting 'general' and 'focused' clustering of rare diseases. , 1995, Statistics in medicine.

[12]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[13]  J. Ord,et al.  Spatial Processes: Models and Applications , 1984 .

[14]  G. Lin,et al.  Loglinear Residual Tests of Moran ’ s I Autocorrelation : An Application to Kentucky Breast Cancer Data , 2004 .

[15]  A. Baddeley,et al.  Residual analysis for spatial point processes (with discussion) , 2005 .

[16]  L. Anselin SPATIAL DEPENDENCE AND SPATIAL STRUCTURAL INSTABILITY IN APPLIED REGRESSION ANALYSIS , 1990 .

[17]  Julian Besag,et al.  The Detection of Clusters in Rare Diseases , 1991 .

[18]  W. D. Ray Applied Linear Statistical Models (3rd Edition) , 1991 .

[19]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[20]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[21]  T. Waldhör,et al.  The spatial autocorrelation coefficient Moran's I under heteroscedasticity. , 1996, Statistics in medicine.

[22]  A. Stewart Fotheringham,et al.  Trends in quantitative methods I: stressing the local , 1997 .

[23]  Daniel A. Griffith,et al.  A spatial filtering specification for the auto-Poisson model , 2002 .

[24]  Youngihn Kho,et al.  GeoDa: An Introduction to Spatial Data Analysis , 2006 .

[25]  Ashish K. Sen,et al.  “Large Sample-Size Distribution of Statistics Used in Testing for Spatial Correlation”: A Reply , 1977 .

[26]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[27]  Martin Charlton,et al.  A comparison of random coefficient modelling and geographically weighted regression for spatially non-stationary regression problems , 1999 .

[28]  Luc Anselin,et al.  The Spatial Patterning of County Homicide Rates: An Application of Exploratory Spatial Data Analysis , 1999 .

[29]  A. Getis,et al.  Constructing the Spatial Weights Matrix Using a Local Statistic , 2004 .

[30]  P. Moran The Interpretation of Statistical Maps , 1948 .

[31]  Robert R. Sokal,et al.  Local Spatial Autocorrelation in a Biological Model , 2010 .

[32]  Peter A. Rogerson,et al.  The Detection of Clusters Using a Spatial Version of the Chi‐Square Goodness‐of‐Fit Statistic , 1999 .

[33]  R. J. Bennett,et al.  Spatial Structure and Spatial Interaction: Modelling Approaches to the Statistical Analysis of Geographical Data , 1985 .

[34]  A. Whittemore,et al.  A test to detect clusters of disease , 1987 .

[35]  D. Pierce,et al.  Residuals in Generalized Linear Models , 1986 .

[36]  Sang-Il Lee,et al.  A Generalized Significance Testing Method for Global Measures of Spatial Association: An Extension of the Mantel Test , 2004 .

[37]  Keith Ord,et al.  Testing for Spatial Autocorrelation Among Regression Residuals , 2010 .

[38]  Neil Wrigley,et al.  Categorical Data Analysis for Geographers and Environmental Scientists , 1985 .

[39]  A. Baddeley,et al.  Residual analysis for spatial point processes (with discussion) , 2005 .

[40]  Bernard Fingleton,et al.  Log-Linear Models with Dependent Spatial Data , 1983 .

[41]  R. Geary,et al.  The Contiguity Ratio and Statistical Mapping , 1954 .