Dynamic signature for a closed-set identification based on nonlinear analysis

This paper presents a study of biometric identification using a methodology based on complexity measures. The identification system designed, implemented and evaluated uses nonlinear dynamic techniques such as Lempel-Ziv Complexity, the Largest Lyapunov Exponent, Hurst Exponent, Correlation Dimension, Shannon Entropy and Kolmogorov Entropy to characterize the process and capture the intrinsic dynamics of the user's signature. In the validation process 3 databases were used SVC, MCYT and our own (ITMMS-01) obtaining closed-set identification performances of 98.12%, 97.38% and 99.50% accordingly. Satisfactory results were achieved with a conventional linear classifier spending a minimum computational cost.

[1]  Hong Chang,et al.  SVC2004: First International Signature Verification Competition , 2004, ICBA.

[2]  Schuster,et al.  Easily calculable measure for the complexity of spatiotemporal patterns. , 1987, Physical review. A, General physics.

[3]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[4]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[5]  John M. Gottman,et al.  Time Series Analysis: A Comprehensive Introduction for Social Scientists. , 1983 .

[6]  P. Walters Introduction to Ergodic Theory , 1977 .

[7]  Juan J. Igarza,et al.  MCYT baseline corpus: a bimodal biometric database , 2003 .

[8]  Bruce J. West,et al.  Chaos and fractals in human physiology. , 1990, Scientific American.

[9]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[10]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[11]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[12]  Shaogang Gong,et al.  Audio- and Video-based Biometric Person Authentication , 1997, Lecture Notes in Computer Science.

[13]  F. Takens Detecting strange attractors in turbulence , 1981 .

[14]  YanikogluBerrin,et al.  Identity authentication using improved online signature verification method , 2005 .

[15]  Marcos Faúndez-Zanuy,et al.  On-line signature recognition based on VQ-DTW , 2007, Pattern Recognit..

[16]  Hussein Zedan,et al.  Rough set approach to online signature identification , 2011, Digit. Signal Process..

[17]  M. Small Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance , 2005 .

[18]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[19]  David Ruelle,et al.  Chemical Kinetics and Differentiable Dynamical Systems , 1981 .

[20]  Bruce J. West,et al.  Chaos and fractals in human physiology. , 1990, Scientific American.

[21]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[22]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[23]  Berrin A. Yanikoglu,et al.  Identity authentication using improved online signature verification method , 2005, Pattern Recognit. Lett..

[24]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[25]  Carlos Vivaracho-Pascual,et al.  An efficient low cost approach for on-line signature recognition based on length normalization and fractional distances , 2009, Pattern Recognit..

[26]  Marcos Faúndez-Zanuy,et al.  Fast on-line signature recognition based on VQ with time modeling , 2011, Eng. Appl. Artif. Intell..

[27]  Réjean Plamondon,et al.  Automatic signature verification and writer identification - the state of the art , 1989, Pattern Recognit..

[28]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[29]  Sharath Pankanti,et al.  The relation between the ROC curve and the CMC , 2005, Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05).

[30]  Mitchell G Longstaff,et al.  A nonlinear analysis of the temporal characteristics of handwriting , 1999 .

[31]  Loris Nanni,et al.  An On-Line Signature Verification System Based on Fusion of Local and Global Information , 2005, AVBPA.

[32]  R. Carvajal,et al.  Análisis no lineal de la variabilidad de la frecuencia cardiaca en casos normales y cardiopatías , 2000 .

[33]  P. Lachenbruch An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. , 1967, Biometrics.

[34]  Loris Nanni,et al.  Advanced methods for two-class problem formulation for on-line signature verification , 2006, Neurocomputing.