Condition number estimates for matrices arising in NURBS based isogeometric discretizations of elliptic partial differential equations

We derive bounds for the minimum and maximum eigenvalues and the spectral condition number of matrices for isogeometric discretizations of elliptic partial differential equations in an open, bounded, simply connected Lipschitz domain $\Omega\subset \mathbb{R}^d$, $d\in\{2,3\}$. We consider refinements based on mesh size $h$ and polynomial degree $p$ with maximum regularity of spline basis functions. For the $h$-refinement, the condition number of the stiffness matrix is bounded above by a constant times $ h^{-2}$ and the condition number of the mass matrix is uniformly bounded. For the $p$-refinement, the condition number grows exponentially and is bounded above by $p^{2d+2}4^{pd}$ and $p^{2d}4^{pd}$ for the stiffness and mass matrices, respectively. Rigorous theoretical proofs of these estimates and supporting numerical results are provided.

[1]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[2]  Tom Lyche,et al.  On the p -norm condition number of the multivariate triangular Bernstein basis , 2000 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  D. Braess Finite Elements: Finite Elements , 2007 .

[5]  P. M. Prenter Splines and variational methods , 1975 .

[6]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[7]  Richard Bellman A note on an inequality of E. Schmidt , 1944 .

[8]  Carl de Boor The exact condition of the B-spline basis may be hard to determine , 1990 .

[9]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[10]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[11]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[12]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[13]  Jens Markus Melenk,et al.  On condition numbers in hp -FEM with Gauss-Lobatto-based shape functions , 2002 .

[14]  J. Maître,et al.  About the conditioning of matrices in the p -version of the finite element method for second order elliptic problems , 1995 .

[15]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[16]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[17]  Uwe Fink Finite Element Solution Of Boundary Value Problems Theory And Computation , 2016 .

[18]  S. C. Eisenstat,et al.  ON SOLVING ELLIPTIC EQUATIONS TO MODERATE ACCURACY , 1980 .

[19]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[20]  C. Micchelli,et al.  On multivariate -splines , 1989 .

[21]  Ning Hu,et al.  Bounds for eigenvalues and condition numbers in the p-version of the finite element method , 1998, Math. Comput..

[22]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[23]  Carl de Boor,et al.  On Local Linear Functionals which Vanish at all B-Splines but One. , 1975 .

[24]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[25]  Michael S. Floater Evaluation and properties of the derivative of a NURBS curve , 1992 .

[26]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[27]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[28]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[29]  Jean-Luc Guermond,et al.  Evaluation of the condition number in linear systems arising in finite element approximations , 2006 .

[30]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[31]  J. Daniel,et al.  Splines with Nonnegative B-Spline Coefficients , 1974 .

[32]  Bert Jüttler,et al.  Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis , 2014 .

[33]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[34]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[35]  Ulrich Reif,et al.  Weighted Extended B-Spline Approximation of Dirichlet Problems , 2001, SIAM J. Numer. Anal..

[36]  Karl Scherer,et al.  New Upper Bound for the B-Spline Basis Condition Number , 1999 .

[37]  C. D. Boor,et al.  Splines as linear combinations of B-splines. A Survey , 1976 .

[38]  Z. Pammer,et al.  The p–version of the finite–element method , 2014 .

[39]  J. Maître,et al.  Condition number and diagonal preconditioning: comparison of the $p$-version and the spectral element methods , 1996 .

[40]  J M Pe˜na B-splines and Optimal Stability , 1997 .

[41]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[42]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[43]  Satyendra Tomar,et al.  Condition number estimates for matrices arising in the isogeometric discretizations , 2012 .

[44]  Klaus Höllig Stability of the B-spline basis via knot insertion , 2000, Comput. Aided Geom. Des..

[45]  Ulrich Reif,et al.  Stability of tensor product B-splines on domains , 2008, J. Approx. Theory.