Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations
暂无分享,去创建一个
Davod Khojasteh Salkuyeh | Davod Hezari | Vahid Edalatpour | D. K. Salkuyeh | Davod Hezari | Vahid Edalatpour
[1] Ke Wang,et al. SSOR-like methods for saddle point problems , 2009, Int. J. Comput. Math..
[2] Ting-Zhu Huang,et al. Modified Hermitian and skew‐Hermitian splitting methods for non‐Hermitian positive‐definite linear systems , 2007, Numer. Linear Algebra Appl..
[3] Yongzhong Song. Semiconvergence of block SOR method for singular linear systems with p -cyclic matrices , 2001 .
[4] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[5] David J. Evans,et al. Optimum parameter for the SOR-like method for augmented systems , 2004, Int. J. Comput. Math..
[6] Louis A. Hageman,et al. Iterative Solution of Large Linear Systems. , 1971 .
[7] Mario Markus,et al. Multipeaked probability distributions of recurrence times. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] J. Ortega,et al. SOR as a preconditioner , 1995 .
[9] S. Arridge. Optical tomography in medical imaging , 1999 .
[10] A. Hadjidimos. Successive overrelaxation (SOR) and related methods , 2000 .
[11] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[12] Gene H. Golub,et al. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..
[13] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[14] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[15] Xu Li,et al. Lopsided PMHSS iteration method for a class of complex symmetric linear systems , 2013, Numerical Algorithms.
[16] Bill Poirier,et al. Efficient preconditioning scheme for block partitioned matrices with structured sparsity , 2000, Numer. Linear Algebra Appl..
[17] M. Benzi,et al. Block preconditioning of real-valued iterative algorithms for complex linear systems , 2007 .
[18] Michele Benzi,et al. A Generalization of the Hermitian and Skew-Hermitian Splitting Iteration , 2009, SIAM J. Matrix Anal. Appl..
[19] Gene H. Golub,et al. SOR-like Methods for Augmented Systems , 2001 .
[20] F. M. Toyama,et al. Accurate numerical solutions of the time-dependent Schrödinger equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.
[22] Barbara Kaltenbacher,et al. Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.
[23] V. Simoncini,et al. Iterative system solvers for the frequency analysis of linear mechanical systems , 2000 .
[24] Fang Chen,et al. Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.
[25] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.
[26] Gene H. Golub,et al. A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..
[27] J. Ortega,et al. SOR as a preconditioner II , 1998 .
[28] Gene H. Golub,et al. On successive‐overrelaxation acceleration of the Hermitian and skew‐Hermitian splitting iterations , 2007, Numer. Linear Algebra Appl..
[29] Zheng Li,et al. Modified SOR-like method for the augmented system , 2007, Int. J. Comput. Math..
[30] Fang Chen,et al. On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.