Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations

In this paper, to solve a broad class of complex symmetric linear systems, we recast the complex system in a real formulation and apply the generalized successive overrelaxation (GSOR) iterative method to the equivalent real system. We then investigate its convergence properties and determine its optimal iteration parameter as well as its corresponding optimal convergence factor. In addition, the resulting GSOR preconditioner is used to precondition Krylov subspace methods such as the generalized minimal residual method for solving the real equivalent formulation of the system. Finally, we give some numerical experiments to validate the theoretical results and compare the performance of the GSOR method with the modified Hermitian and skew-Hermitian splitting iteration.

[1]  Ke Wang,et al.  SSOR-like methods for saddle point problems , 2009, Int. J. Comput. Math..

[2]  Ting-Zhu Huang,et al.  Modified Hermitian and skew‐Hermitian splitting methods for non‐Hermitian positive‐definite linear systems , 2007, Numer. Linear Algebra Appl..

[3]  Yongzhong Song Semiconvergence of block SOR method for singular linear systems with p -cyclic matrices , 2001 .

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  David J. Evans,et al.  Optimum parameter for the SOR-like method for augmented systems , 2004, Int. J. Comput. Math..

[6]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[7]  Mario Markus,et al.  Multipeaked probability distributions of recurrence times. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  J. Ortega,et al.  SOR as a preconditioner , 1995 .

[9]  S. Arridge Optical tomography in medical imaging , 1999 .

[10]  A. Hadjidimos Successive overrelaxation (SOR) and related methods , 2000 .

[11]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[12]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[13]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[14]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[15]  Xu Li,et al.  Lopsided PMHSS iteration method for a class of complex symmetric linear systems , 2013, Numerical Algorithms.

[16]  Bill Poirier,et al.  Efficient preconditioning scheme for block partitioned matrices with structured sparsity , 2000, Numer. Linear Algebra Appl..

[17]  M. Benzi,et al.  Block preconditioning of real-valued iterative algorithms for complex linear systems , 2007 .

[18]  Michele Benzi,et al.  A Generalization of the Hermitian and Skew-Hermitian Splitting Iteration , 2009, SIAM J. Matrix Anal. Appl..

[19]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[20]  F. M. Toyama,et al.  Accurate numerical solutions of the time-dependent Schrödinger equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[22]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[23]  V. Simoncini,et al.  Iterative system solvers for the frequency analysis of linear mechanical systems , 2000 .

[24]  Fang Chen,et al.  Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.

[25]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[26]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[27]  J. Ortega,et al.  SOR as a preconditioner II , 1998 .

[28]  Gene H. Golub,et al.  On successive‐overrelaxation acceleration of the Hermitian and skew‐Hermitian splitting iterations , 2007, Numer. Linear Algebra Appl..

[29]  Zheng Li,et al.  Modified SOR-like method for the augmented system , 2007, Int. J. Comput. Math..

[30]  Fang Chen,et al.  On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.