A Review Paper on Content Based Image Retrieval

Content Based Image Retrieval (CBIR) plays very important role in the research field of digital Image processing. DIP deals with manipulation of digital images through a digital computer. Basically CBIR is responsible for extracting low level features of image like color, texture, shape and similarity measures for the comparison of different images. And after that retrieve the similar images using query image.

[1]  Yan Zhang,et al.  On the Euclidean distance of images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  K. Velmurugan,et al.  A Survey of Content-Based Image Retrieval Systems using Scale-Invariant Feature Transform (SIFT) , 2014 .

[3]  S. Valli,et al.  Region-based image retrieval using the semantic cluster matrix and adaptive learning , 2012, Int. J. Comput. Sci. Eng..

[4]  K. Nirmala,et al.  Comparative Analysis in Content Based Image Retrieval System Using Color and Texture , 2013 .

[5]  Yixin Chen,et al.  Content-based image retrieval by clustering , 2003, MIR '03.

[6]  I. Felci Rajam,et al.  An Efficient Content Based Image Retrieval Framework Using Machine Learning Techniques , 2010, ICDEM.

[7]  Bipin C. Desai,et al.  A unified image retrieval framework on local visual and semantic concept-based feature spaces , 2009, J. Vis. Commun. Image Represent..

[8]  Saptadi Nugroho,et al.  Rotation Invariant Indexing For Image Using Zernike Moments and R–Tree , 2011 .

[9]  Tasneem Mirza,et al.  Content based Image Retrieval using Color and Texture , 2016 .

[10]  Kpalma Kidiyo,et al.  A Survey of Shape Feature Extraction Techniques , 2008 .

[11]  Shamik Sural,et al.  Segmentation and histogram generation using the HSV color space for image retrieval , 2002, Proceedings. International Conference on Image Processing.

[12]  Dejan Gjorgjevikj,et al.  A Multi-class SVM Classifier Utilizing Binary Decision Tree , 2009, Informatica.

[13]  Shu-Yuan Chen,et al.  Retrieval of translated, rotated and scaled color textures , 2003, Pattern Recognit..

[14]  Pritesh Jain,et al.  Efficient Content Based Image Retrieval Using Color and Texture , 2013 .

[15]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[16]  Pragati Ashok Deole Content Based Image Retrieval using Color Feature Extraction with KNN Classification , 2014 .

[17]  Muhammad Sharif,et al.  Content Based Image Retrieval: Survey , 2012 .

[18]  S. Sathiamoorthy,et al.  A Framework for Color Image Retrieval Using Full Range Gaussian Morkov Random Field Model and Multi-Class SVM Learning Approach , 2014 .

[19]  D. G. Bhalke,et al.  Beginners to Content Based Image Retrieval , 2012 .

[20]  Nikolas P. Galatsanos,et al.  Efficient Content Based Image Retrieval Using Color and Texture , 2013 .

[21]  Dejan Gjorgjevikj,et al.  Multi-class classification using support vector machines in decision tree architecture , 2009, IEEE EUROCON 2009.

[22]  Antony Selvadoss Thanamani,et al.  Well-Organized Content based Image Retrieval System in RGB Color Histogram, Tamura Texture and Gabor Feature , 2014 .

[23]  Mussarat Yasmin,et al.  Use of Low Level Features for Content Based Image Retrieval: Survey , 2013 .

[24]  Robert B. McGhee,et al.  Aircraft Identification by Moment Invariants , 1977, IEEE Transactions on Computers.

[25]  Swarup Medasani,et al.  Content-based image retrieval based on a fuzzy approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[26]  S. Valli,et al.  Content-Based Image Retrieval Using a Quick SVM-Binary Decision Tree – QSVMBDT , 2011 .

[27]  S. Valli,et al.  SRBIR: Semantic Region Based Image Retrieval by Extracting the Dominant Region and Semantic Learning , 2011 .

[28]  H. B. Kekre,et al.  A SURVEY OF CBIR TECHNIQUES AND SEMANTICS , 2011 .