Dust in the bright supernova remnant N49 in the LMC

We investigate the dust associated with the supernova remnant (SNR) N49 in the Large Magellanic Cloud (LMC) as observed with the Herschel Space Observatory. N49 is unusually bright because of an interaction with a molecular cloud along its eastern edge. We have used PACS and SPIRE to measure the far IR flux densities of the entire SNR and of a bright region on the eastern edge of the SNR where the SNR shock is encountering the molecular cloud. Using these fluxes supplemented with archival data at shorter wavelengths, we estimate the dust mass associated with N49 to be about 10 M_☉. The bulk of the dust in our simple two-component model has a temperature of 20–30 K, similar to that of nearby molecular clouds. Unfortunately, as a result of the limited angular resolution of Herschel at the wavelengths sampled with SPIRE, the uncertainties are fairly large. Assuming this estimate of the dust mass associated with the SNR is approximately correct, it is probable that most of the dust in the SNR arises from regions where the shock speed is too low to produce significant X-ray emission. The total amount of warm 50–60 K dust is ~0.1 or 0.4 M_☉, depending on whether the dust is modeled in terms of carbonaceous or silicate grains. This provides a firm lower limit to the amount of shock heated dust in N49.

[1]  M. Sauvage,et al.  Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE): the Large Magellanic Cloud dust , 2010, 1006.0985.

[2]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[3]  M. Sauvage,et al.  Determining dust temperatures and masses in the Herschel era: The importance of observations longward of 200 micron , 2010, 1005.2497.

[4]  Joana M. Oliveira,et al.  The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud , 2010, 1004.1142.

[5]  D. Maoz,et al.  On the size distribution of supernova remnants in the Magellanic Clouds , 2010, 1003.3030.

[6]  Joana M. Oliveira,et al.  A SPITZER SPACE TELESCOPE FAR-INFRARED SPECTRAL ATLAS OF COMPACT SOURCES IN THE MAGELLANIC CLOUDS. I. THE LARGE MAGELLANIC CLOUD , 2009, 0910.3339.

[7]  J. Rho,et al.  SPITZER OBSERVATIONS OF THE YOUNG CORE-COLLAPSE SUPERNOVA REMNANT 1E0102-72.3: INFRARED EJECTA EMISSION AND DUST FORMATION , 2009 .

[8]  A. Bolatto,et al.  Submitted to ApJ. Preprint typeset using L ATEX style emulateapj v. 05/04/06 MEASURING DUST PRODUCTION IN THE SMALL MAGELLANIC CLOUD CORE-COLLAPSE SUPERNOVA REMNANT 1E0102.2−7219 , 2022 .

[9]  H. Kaneda,et al.  Supernova Remnants in the AKARI IRC Survey of the Large Magellanic Cloud , 2008, 0811.1403.

[10]  B. Williams,et al.  Ejecta, Dust, and Synchrotron Radiation in SNR B0540–69.3: A More Crab-Like Remnant than the Crab , 2008, 0807.4155.

[11]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[12]  B. Schaefer A PROBLEM WITH THE CLUSTERING OF RECENT MEASURES OF THE DISTANCE TO THE LARGE MAGELLANIC CLOUD , 2007, 0709.4531.

[13]  S. Oh,et al.  The infrared astronomical mission AKARI , 2007, 0708.1796.

[14]  B. Lundgren,et al.  Supernova Remnants in the Magellanic Clouds. IX. Multiwavelength Analysis of the Physical Structure of N49 , 2007, 0708.1515.

[15]  N. Takeyama,et al.  The Infrared Camera (IRC) for AKARI–Design and Imaging Performance , 2007, 0705.4144.

[16]  S. Kwok Physics And Chemistry of the Interstellar Medium , 2006 .

[17]  B. Williams,et al.  Dust Destruction in Fast Shocks of Core-Collapse Supernova Remnants in the Large Magellanic Cloud , 2006, astro-ph/0610166.

[18]  R. Gruendl,et al.  Supernova Remnants in the Magellanic Clouds. VII. Infrared Emission from Supernova Remnants , 2006, astro-ph/0607598.

[19]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[20]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[21]  D. Burrows,et al.  X-Ray Emission from Multiphase Shock in the Large Magellanic Cloud Supernova Remnant N49 , 2002, astro-ph/0211552.

[22]  J. Hughes,et al.  ASCA X-Ray Spectroscopy of Large Magellanic Cloud Supernova Remnants and the Metal Abundances of the Large Magellanic Cloud , 1998 .

[23]  J. Dickel,et al.  Five Mature Supernova Remnants in the Large Magellanic Cloud , 1998 .

[24]  J. Hughes,et al.  Supernova Remnants Associated with Molecular Clouds in the Large Magellanic Cloud , 1996, astro-ph/9612198.

[25]  L. Colangeli,et al.  Optical constants of cosmic carbon analogue grains — I. Simulation of clustering by a modified continuous distribution of ellipsoids , 1996 .

[26]  R. Hill,et al.  UIT and Optical Imagery of Large Magellanic Cloud Associations LH 52 and LH 53: Ages and Initial Mass Function Slopes , 1995 .

[27]  S. Kulkarni,et al.  Discovery of an X-ray source coincident with the soft γ-ray repeater 0525 – 66 , 1994, Nature.

[28]  K. Long,et al.  A multiwavelength study of the supernova remnant N49 in the Large Magellanic Cloud , 1992 .

[29]  J. Graham,et al.  Collisionally Heated Dust in Large Magellanic Cloud Supernova Remnants , 1987 .

[30]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[31]  D. Helfand,et al.  A soft X-ray study of the Large Magellanic Cloud , 1981 .

[32]  K. Hurley,et al.  Detection of a fast, intense and unusual gamma-ray transient. , 1979 .