Recent Research Progress and Perspectives on Porphyrin-Based Porous Photocatalysts in the Field of CO2 Reduction

[1]  Tianfu Liu,et al.  Partial Metalation of Porphyrin Moieties in Hydrogen-Bonded Organic Frameworks Provides Enhanced CO2 Photoreduction Activity. , 2022, Angewandte Chemie.

[2]  R. Verduzco,et al.  3D Covalent Organic Frameworks with Interpenetrated pcb Topology Based on 8-Connected Cubic Nodes. , 2022, Journal of the American Chemical Society.

[3]  E. Waclawik,et al.  Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2 , 2022, Nature Communications.

[4]  Lina Xiao,et al.  Edge engineering of platinum nanoparticles via porphyrin-based ultrathin 2D metal-organic frameworks for enhanced photocatalytic hydrogen generation , 2022, Chemical Engineering Journal.

[5]  Junwang Tang,et al.  Methane transformation by photocatalysis , 2022, Nature Reviews Materials.

[6]  L. Mei,et al.  Encapsulation of Polymetallic Oxygen Clusters in a Mesoporous/Microporous Thorium-Based Porphyrin Metal-Organic Framework for Enhanced Photocatalytic CO2 Reduction. , 2022, Inorganic chemistry.

[7]  Xinchen Wang,et al.  Incorporation of Metal Active Sites on Porous Polycarbazoles for Photocatalytic CO2 Reduction , 2022, ChemCatChem.

[8]  T. Maji,et al.  Visible Light Driven Photocatalytic CO2 Reduction to CO/CH4 using Metal-Organic 'Soft' Coordination Polymer Gel. , 2022, Angewandte Chemie.

[9]  Dongdong Qi,et al.  Porphyrin Coordination Polymer with Dual Photocatalytic Sites for Efficient Carbon Dioxide Reduction. , 2022, ACS applied materials & interfaces.

[10]  Jing-lan Kan,et al.  Porphyrin covalent organic framework for photocatalytic synthesis of tetrahydroquinolines , 2022, Chinese Chemical Letters.

[11]  Z. Shao,et al.  Structural stability of catalyst ink and its effects on the catalyst layer microstructure and fuel cell performance , 2022, Journal of Power Sources.

[12]  Yuehan Cao,et al.  Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol , 2022, Applied Catalysis B: Environmental.

[13]  Tianfu Liu,et al.  Metallization-Prompted Robust Porphyrin-Based Hydrogen-Bonded Organic Frameworks for Photocatalytic CO2 Reduction. , 2021, Angewandte Chemie.

[14]  Lei Lei,et al.  Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture. , 2021, Journal of colloid and interface science.

[15]  Rui‐tang Guo,et al.  Research Progress on CO2 Photocatalytic Reduction with Full Solar Spectral Responses , 2021, Energy & Fuels.

[16]  Yong Zhou,et al.  Bismuth Vacancy-Induced Efficient CO2 Photoreduction in BiOCl Directly from Natural Air: A Progressive Step toward Nature Photosynthesis. , 2021, Nano letters.

[17]  Yongfa Zhu,et al.  Construction of Interfacial Electric Field via Dual‐Porphyrin Heterostructure Boosting Photocatalytic Hydrogen Evolution , 2021, Advanced materials.

[18]  Yiying Wu,et al.  Grain Boundary Engineering with Self-Assembled Porphyrin Supramolecules for Highly Efficient Large-Area Perovskite Photovoltaics. , 2021, Journal of the American Chemical Society.

[19]  Jian Zhang,et al.  Energy Band Alignment and Redox-active Sites in Metalloporphyrin-Spaced Metal-Catechol Frameworks for Enhanced CO2 Photoreduction. , 2021, Angewandte Chemie.

[20]  T. Lau,et al.  Organic Photosensitizers for Catalytic Solar Fuel Generation , 2021, Energy & Fuels.

[21]  Minghou Xu,et al.  Visible Light-Driven CO2 Photocatalytic Reduction by Co-porphyrin-Coupled MgAl Layered Double-Hydroxide Composite , 2021, Energy & Fuels.

[22]  O. Wenger,et al.  Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review , 2021, Energy & fuels : an American Chemical Society journal.

[23]  Yongfa Zhu,et al.  A Full‐Spectrum Porphyrin–Fullerene D–A Supramolecular Photocatalyst with Giant Built‐In Electric Field for Efficient Hydrogen Production , 2021, Advanced materials.

[24]  M. Leung,et al.  Atomically Dispersed Iron Metal Site in a Porphyrin-Based Metal-Organic Framework for Photocatalytic Nitrogen Fixation. , 2021, ACS nano.

[25]  Chuncheng Chen,et al.  An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2 , 2021 .

[26]  Long Jiang,et al.  Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore , 2021, Nature Communications.

[27]  Yufang Zhu,et al.  Rational Construction of Light-Driven Catalysts for CO2 Reduction , 2021 .

[28]  M. Sillanpää,et al.  High selective photocatalytic CO2 conversion into liquid solar fuel over a cobalt porphyrin-based metal–organic framework , 2021, Photochemical & Photobiological Sciences.

[29]  Xu‐Bing Li,et al.  Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution , 2021, Nature Communications.

[30]  T. He,et al.  In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO2 Reduction. , 2021, Small.

[31]  Yongfa Zhu,et al.  Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst , 2020, National science review.

[32]  Dapeng Liu,et al.  Recent Development of Porous Porphyrin‐based Nanomaterials for Photocatalysis , 2021, ChemCatChem.

[33]  Hai‐Long Jiang,et al.  Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. , 2020, Journal of the American Chemical Society.

[34]  Lirong Zheng,et al.  Regulating Photocatalysis by Spin-State Manipulation of Cobalt in Covalent Organic Frameworks. , 2020, Journal of the American Chemical Society.

[35]  Yaoqing Hu,et al.  An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding , 2020, Nano Research.

[36]  Liang Feng,et al.  Catalytic Porphyrin Framework Compounds , 2020 .

[37]  C. Janáky,et al.  Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality , 2020, ACS energy letters.

[38]  W. Jang,et al.  Applications of porphyrins in emerging energy conversion technologies , 2020 .

[39]  Jiang Liu,et al.  Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion , 2019, National science review.

[40]  H. Fan,et al.  Porphyrin-based photocatalysts for hydrogen production , 2020, MRS Bulletin.

[41]  Yang-Hui Luo,et al.  Porphyrin-Based Hydrogen-Bonded Organic Frameworks for the Photocatalytic Degradation of 9,10-Diphenylanthracene , 2019, ACS Applied Nano Materials.

[42]  Mi Zhang,et al.  Rational Crystalline Covalent Organic Frameworks Design for Efficient CO2 Photoreduction with H2O. , 2019, Angewandte Chemie.

[43]  Tongbu Lu,et al.  Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction. , 2019, Angewandte Chemie.

[44]  Jingwei Huang,et al.  In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. , 2019, Science bulletin.

[45]  Xiangdong Xue,et al.  Porphyrin-Based Nanomedicines for Cancer Treatment. , 2019, Bioconjugate chemistry.

[46]  Tierui Zhang,et al.  Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction , 2018, Applied Catalysis B: Environmental.

[47]  Disruption of Antiaromaticity in Structurally Related Expanded Porphyrin-like Macrocycles with Benzene Linkers , 2022 .