A Fully Integrated 320 GHz Coherent Imaging Transceiver in 130 nm SiGe BiCMOS

A 320 GHz fully integrated terahertz imaging system is reported. The system is composed of a phase-locked high-power transmitter and a coherent high-sensitivity subharmonic-mixing receiver, which are fabricated using a 130 nm SiGe BiCMOS technology (fT/fmax = 220/280 GHz). To enhance the imaging sensitivity, a heterodyne coherent detection scheme is utilized. To obtain frequency coherency, fully integrated phase-locked loops are implemented on both the transmitter and receiver chips. According to the measurement results, consuming a total dc power of 605 mW, the transmitter chip achieves a peak radiated power of 2 mW and a peak EIRP of 21.1 dBm. The receiver chip achieves an equivalent incoherent responsivity of more than 7.26 MV/Wand a sensitivity of 70.1 pW under an integration bandwidth of 1 kHz, with a total dc power consumption of 117 mW. The achieved sensitivity with this proposed coherent imaging transceiver is around ten times better compared with other state-of-the-art incoherent imagers. To the best of our knowledge, this paper demonstrates the first fully integrated coherent terahertz imaging transceiver on silicon.

[1]  K. Sengupta,et al.  Silicon Integrated 280 GHz Imaging Chipset With 4 4 SiGe Receiver Array and CMOS Source , 2015 .

[2]  Ehsan Afshari,et al.  25.5 A 320GHz subharmonic-mixing coherent imager in 0.13µm SiGe BiCMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[3]  Janus Grzyb,et al.  A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications , 2014, IEEE Journal of Solid-State Circuits.

[4]  Robert E. Miles,et al.  Terahertz Time-Domain Spectroscopy for Material Characterization , 2007, Proceedings of the IEEE.

[5]  Zheng Wang,et al.  A Silicon-Based 0.3 THz Frequency Synthesizer With Wide Locking Range , 2014, IEEE Journal of Solid-State Circuits.

[6]  Kaushik Sengupta,et al.  A 0.28 THz Power-Generation and Beam-Steering Array in CMOS Based on Distributed Active Radiators , 2012, IEEE Journal of Solid-State Circuits.

[7]  E. Dacquay,et al.  Scaling of SiGe BiCMOS Technologies for Applications above 100 GHz , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[8]  Gabriel M. Rebeiz,et al.  A 0.32 THz SiGe 4x4 Imaging Array Using High-Efficiency On-Chip Antennas , 2013, IEEE Journal of Solid-State Circuits.

[9]  A.A. Abidi,et al.  Multi-Phase Injection Widens Lock Range of Ring-Oscillator-Based Frequency Dividers , 2008, IEEE Journal of Solid-State Circuits.

[10]  Ehsan Afshari,et al.  A SiGe Terahertz Heterodyne Imaging Transmitter With 3.3 mW Radiated Power and Fully-Integrated Phase-Locked Loop , 2015, IEEE Journal of Solid-State Circuits.

[11]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[12]  Ehsan Afshari,et al.  An efficient 210GHz compact harmonic oscillator with 1.4dBm peak output power and 10.6% tuning range in 130nm BiCMOS , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[13]  Yan Zhao,et al.  A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[14]  Ruonan Han,et al.  A 280-GHz Schottky Diode Detector in 130-nm Digital CMOS , 2010, IEEE Journal of Solid-State Circuits.

[15]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[16]  B. Gelmont,et al.  Terahertz Fourier transform characterization of biological materials in a liquid phase , 2006 .

[17]  Janusz Grzyb,et al.  160-GHz to 1-THz Multi-Color Active Imaging With a Lens-Coupled SiGe HBT Chip-Set , 2015, IEEE Transactions on Microwave Theory and Techniques.

[18]  V. Krozer,et al.  THz Active Imaging Systems With Real-Time Capabilities , 2011, IEEE Transactions on Terahertz Science and Technology.

[19]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[20]  B. Razavi A study of injection locking and pulling in oscillators , 2004, IEEE Journal of Solid-State Circuits.

[21]  Ehsan Afshari,et al.  A High-Power and Scalable 2-D Phased Array for Terahertz CMOS Integrated Systems , 2015, IEEE Journal of Solid-State Circuits.

[22]  Ehsan Afshari,et al.  25.5 A 320GHz phase-locked transmitter with 3.3mW radiated power and 22.5dBm EIRP for heterodyne THz imaging systems , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[23]  Ehsan Afshari,et al.  Progress towards mW-power generation in CMOS THz signal sources , 2013, 2013 European Microwave Integrated Circuit Conference.

[24]  Ehsan Afshari,et al.  A CMOS High-Power Broadband 260-GHz Radiator Array for Spectroscopy , 2013, IEEE Journal of Solid-State Circuits.

[25]  Ehsan Afshari,et al.  Active Terahertz Imaging Using Schottky Diodes in CMOS: Array and 860-GHz Pixel , 2013, IEEE Journal of Solid-State Circuits.

[26]  Kaushik Sengupta,et al.  Silicon Integrated 280 GHz Imaging Chipset With 4$\times$ 4 SiGe Receiver Array and CMOS Source , 2015, IEEE Transactions on Terahertz Science and Technology.

[27]  G. Ducournau,et al.  A 278 GHz heterodyne receiver with on-chip antenna for THz imaging in 65 nm CMOS process , 2015, ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC).

[28]  W. Grundfest,et al.  THz Medical Imaging: in vivo Hydration Sensing , 2011, IEEE Transactions on Terahertz Science and Technology.