Nanoimprint patterning for tunable light trapping in large-area silicon solar cells

Abstract We demonstrate the flexibility of UV nanoimprint lithography for effective light trapping in p – i – n a-Si:H/μc-Si:H tandem solar cells. A textured polymeric layer covered with pyramidal transparent conductive oxide structures is shown as an ideal system to promote front light scattering and thus enhanced photocurrent. The double structure incorporated into micromorph tandem thin film silicon solar cells is systematically investigated in order to find a relationship between interface morphology, optical properties and photovoltaic characteristics. To prevent the formation of defects during cell growth, a controllable smoothing of the imprinted texture is developed. Modules grown on polymer structures smoothed via multi-replication show excellent performance reaching a photocurrent of 12.6 mA/cm 2 and an efficiency of 12.8%.

[1]  Janez Krč,et al.  Modulated surface textures using zinc‐oxide films for solar cells applications , 2010 .

[2]  G. Ozin,et al.  Silicon Photovoltaics Using Conducting Photonic Crystal Back‐Reflectors , 2008 .

[3]  V. Ursaki,et al.  Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications , 2009 .

[4]  Light Scattering and Trapping in Different Thin Film Photovoltaic Devices , 2009 .

[5]  V. Terrazzoni-Daudrix,et al.  Flexible micromorph tandem a-Si/μc-Si solar cells , 2010 .

[6]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[7]  Benedikt Bläsi,et al.  Spectrally-Selective Photonic Structures for PV Applications , 2010 .

[8]  T. Söderström,et al.  Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post‐oxidation , 2010 .

[9]  C. Battaglia,et al.  High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications , 2011 .

[10]  Christophe Ballif,et al.  UV‐nano‐imprint lithography technique for the replication of back reflectors for n‐i‐p thin film silicon solar cells , 2011 .

[11]  Er-Ping Li,et al.  Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells , 2009 .

[12]  F. Lederer,et al.  Light absorption in textured thin film silicon solar cells: A simple scalar scattering approach versus rigorous simulation , 2011 .

[13]  Joachim Luther,et al.  Computer simulations of light scattering and absorption in dye-sensitized solar cells , 1998 .

[14]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[15]  C. Battaglia,et al.  Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting , 2010 .

[16]  H. Smit,et al.  Influence of scattering layers on efficiency of dye-sensitized solar cells , 2006 .

[17]  M. Zeman,et al.  Light scattering properties of surface-textured substrates , 2010 .

[18]  Mukti Aryal,et al.  Imprinted large-scale high density polymer nanopillars for organic solar cells , 2008 .

[19]  J. Rogers,et al.  Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement. , 2010, Nano letters (Print).

[20]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[21]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[22]  Amy Cha-Tien Sun,et al.  Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography , 2005 .

[23]  G. Beaucarne,et al.  8% Efficient thin‐film polycrystalline‐silicon solar cells based on aluminum‐ induced crystallization and thermal CVD , 2007 .

[24]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[25]  Milan Vanecek,et al.  Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD , 2009 .

[26]  F. Lederer,et al.  Comparison and optimization of randomly textured surfaces in thin-film solar cells. , 2010, Optics express.

[27]  F. Lederer,et al.  Employing dielectric diffractive structures in solar cells – a numerical study , 2008 .

[28]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[29]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[30]  M. Zeman,et al.  Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates , 2002 .

[31]  J. Krč,et al.  Potential of thin-film silicon solar cells by using high haze TCO superstrates , 2010 .

[32]  A. Bessonov,et al.  Design of Patterned Surfaces with Selective Wetting Using Nanoimprint Lithography , 2010 .

[33]  C. Ballif,et al.  Realization of high efficiency micromorph tandem silicon solar cells on glass and plastic substrates: Issues and potential , 2011 .

[34]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[35]  Volker Wittwer,et al.  Diffraction gratings and buried nano-electrodes—architectures for organic solar cells , 2004 .

[36]  Carsten Rockstuhl,et al.  Nanoscale investigation of light‐trapping in a‐Si:H solar cell structures with randomly textured interfaces , 2008 .

[37]  Max Shtein,et al.  Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography , 2007 .

[38]  A. Shah,et al.  Characterisation of rough reflecting substrates incorporated into thin‐film silicon solar cells , 2006 .

[39]  Arvind Shah,et al.  Rough ZnO Layers by LP-CVD Process and their Effect in Improving Performances of Amorphous and Microcrystalline Silicon Solar Cells , 2006 .

[40]  C. Ballif,et al.  Light trapping effects in thin film silicon solar cells , 2009 .

[41]  Dirk N. Weiss,et al.  Nanoimprinting for diffractive light trapping in solar cells , 2010 .

[42]  A. Aberle Thin-film solar cells , 2009 .

[43]  Marko Topič,et al.  Analysis of light scattering in amorphous Si:H solar cells by a one‐dimensional semi‐coherent optical model , 2003 .

[44]  Maurits C. R. Heijna,et al.  Embossing of light trapping patterns in sol-gel coatings for thin film silicon solar cells , 2008, Optics + Photonics for Sustainable Energy.

[45]  H. E. Bennett,et al.  Relation between Surface Roughness and Specular Reflectance at Normal Incidence , 1961 .