Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications
暂无分享,去创建一个
[1] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[2] Peter F. Sturm,et al. A Factorization Based Algorithm for Multi-Image Projective Structure and Motion , 1996, ECCV.
[3] Takeo Kanade,et al. A sequential factorization method for recovering shape and motion from image streams , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[4] H. C. Longuet-Higgins,et al. A computer algorithm for reconstructing a scene from two projections , 1981, Nature.
[5] Manolis I. A. Lourakis,et al. Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix: From Point Correspondences to 3D Measurements , 1999 .
[6] Richard I. Hartley,et al. Estimation of Relative Camera Positions for Uncalibrated Cameras , 1992, ECCV.
[7] R. Vaccaro. SVD and Signal Processing II: Algorithms, Analysis and Applications , 1991 .
[8] Richard J. Vaccaro,et al. A Second-Order Perturbation Expansion for the SVD , 1994 .
[9] Robert J. Schalkoff,et al. Pattern recognition - statistical, structural and neural approaches , 1991 .
[10] Thomas S. Huang,et al. Estimating three-dimensional motion parameters of a rigid planar patch , 1981 .
[11] Olivier D. Faugeras,et al. On the Determination of Epipoles Using Cross-Ratios , 1998, Comput. Vis. Image Underst..
[12] Louis L. Scharf,et al. The SVD and reduced rank signal processing , 1991, Signal Process..
[13] Athanasios Papoulis,et al. Probability, Random Variables and Stochastic Processes , 1965 .
[14] Kenichi Kanatani,et al. Analysis of 3-D Rotation Fitting , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[15] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[16] William H. Press,et al. Numerical recipes in C , 2002 .
[17] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[18] A. M. Mathai. Jacobians of matrix transformations and functions of matrix argument , 1997 .
[19] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[20] Rachid Deriche,et al. Camera Self-Calibration Using the Kruppa Equations and the SVD of the Fundamental Matrix: The Case of Varying Intrinsic Parameters , 2000 .
[21] Jitendra Malik,et al. A Computational Framework for Determining Stereo Correspondence from a Set of Linear Spatial Filters , 1991, ECCV.
[22] Olivier D. Faugeras,et al. Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[23] S. Umeyama,et al. Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[24] Ingemar J. Cox,et al. Cylindrical rectification to minimize epipolar distortion , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[25] Nassir Navab,et al. Relative Affine Structure: Canonical Model for 3D From 2D Geometry and Applications , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[26] Jitendra Malik,et al. Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..
[27] Thomas S. Huang,et al. Estimating three-dimensional motion parameters of a rigid planar patch, II: Singular value decomposition , 1982 .
[28] Konstantinos Konstantinides,et al. Noise estimation and filtering using block-based singular value decomposition , 1997, IEEE Trans. Image Process..
[29] R. Hartley. Cheirality Invariants , 1993 .
[30] Robert M. Haralick,et al. Fast correlation registration method using singular value decomposition , 1986, Int. J. Intell. Syst..
[31] Takeo Kanade,et al. A Paraperspective Factorization Method for Shape and Motion Recovery , 1994, ECCV.
[32] Eugene Isaacson. Numerical Recipes: The Art of Scientific Computing (William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling) , 1988 .
[33] Olivier D. Faugeras,et al. Characterizing the Uncertainty of the Fundamental Matrix , 1997, Comput. Vis. Image Underst..
[34] Jar-Ferr Yang,et al. Combined techniques of singular value decomposition and vector quantization for image coding , 1995, IEEE Trans. Image Process..
[35] Takeo Kanade,et al. A Paraperspective Factorization Method for Shape and Motion Recovery , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[36] Sun-Yuan Kung,et al. Multilayer neural networks for reduced-rank approximation , 1994, IEEE Trans. Neural Networks.
[37] S. P. Mudur,et al. Three-dimensional computer vision: a geometric viewpoint , 1993 .
[38] O. Faugeras,et al. Camera Self-Calibration from Video Sequences: the Kruppa Equations Revisited , 1996 .
[39] Qin Lin,et al. A unified algorithm for principal and minor components extraction , 1998, Neural Networks.
[40] Rachid Deriche,et al. A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..
[41] Richard I. Hartley,et al. Kruppa's Equations Derived from the Fundamental Matrix , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[42] K. S. Arun,et al. Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[43] Josef Kittler,et al. On the correspondence problem for wide angular separation of non-coplanar points , 1998, Image Vis. Comput..