Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications

The Singular Value Decomposition (SVD) of a matrix is a linear algebra tool that has been successfully applied to a wide variety of domains. The present paper is concerned with the problem of estimating the Jacobian of the SVD components of a matrix with respect to the matrix itself. An exact analytic technique is developed that facilitates the estimation of the Jacobian using calculations based on simple linear algebra. Knowledge of the Jacobian of the SVD is very useful in certain applications involving multivariate regression or the computation of the uncertainty related to estimates obtained through the SVD. The usefulness and generality of the proposed technique is demonstrated by applying it to the estimation of the uncertainty for three different vision problems, namely self-calibration, epipole computation and rigid motion estimation.

[1]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[2]  Peter F. Sturm,et al.  A Factorization Based Algorithm for Multi-Image Projective Structure and Motion , 1996, ECCV.

[3]  Takeo Kanade,et al.  A sequential factorization method for recovering shape and motion from image streams , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[5]  Manolis I. A. Lourakis,et al.  Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix: From Point Correspondences to 3D Measurements , 1999 .

[6]  Richard I. Hartley,et al.  Estimation of Relative Camera Positions for Uncalibrated Cameras , 1992, ECCV.

[7]  R. Vaccaro SVD and Signal Processing II: Algorithms, Analysis and Applications , 1991 .

[8]  Richard J. Vaccaro,et al.  A Second-Order Perturbation Expansion for the SVD , 1994 .

[9]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .

[10]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch , 1981 .

[11]  Olivier D. Faugeras,et al.  On the Determination of Epipoles Using Cross-Ratios , 1998, Comput. Vis. Image Underst..

[12]  Louis L. Scharf,et al.  The SVD and reduced rank signal processing , 1991, Signal Process..

[13]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[14]  Kenichi Kanatani,et al.  Analysis of 3-D Rotation Fitting , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[16]  William H. Press,et al.  Numerical recipes in C , 2002 .

[17]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[18]  A. M. Mathai Jacobians of matrix transformations and functions of matrix argument , 1997 .

[19]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[20]  Rachid Deriche,et al.  Camera Self-Calibration Using the Kruppa Equations and the SVD of the Fundamental Matrix: The Case of Varying Intrinsic Parameters , 2000 .

[21]  Jitendra Malik,et al.  A Computational Framework for Determining Stereo Correspondence from a Set of Linear Spatial Filters , 1991, ECCV.

[22]  Olivier D. Faugeras,et al.  Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Ingemar J. Cox,et al.  Cylindrical rectification to minimize epipolar distortion , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Nassir Navab,et al.  Relative Affine Structure: Canonical Model for 3D From 2D Geometry and Applications , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Jitendra Malik,et al.  Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..

[27]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, II: Singular value decomposition , 1982 .

[28]  Konstantinos Konstantinides,et al.  Noise estimation and filtering using block-based singular value decomposition , 1997, IEEE Trans. Image Process..

[29]  R. Hartley Cheirality Invariants , 1993 .

[30]  Robert M. Haralick,et al.  Fast correlation registration method using singular value decomposition , 1986, Int. J. Intell. Syst..

[31]  Takeo Kanade,et al.  A Paraperspective Factorization Method for Shape and Motion Recovery , 1994, ECCV.

[32]  Eugene Isaacson Numerical Recipes: The Art of Scientific Computing (William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling) , 1988 .

[33]  Olivier D. Faugeras,et al.  Characterizing the Uncertainty of the Fundamental Matrix , 1997, Comput. Vis. Image Underst..

[34]  Jar-Ferr Yang,et al.  Combined techniques of singular value decomposition and vector quantization for image coding , 1995, IEEE Trans. Image Process..

[35]  Takeo Kanade,et al.  A Paraperspective Factorization Method for Shape and Motion Recovery , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Sun-Yuan Kung,et al.  Multilayer neural networks for reduced-rank approximation , 1994, IEEE Trans. Neural Networks.

[37]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[38]  O. Faugeras,et al.  Camera Self-Calibration from Video Sequences: the Kruppa Equations Revisited , 1996 .

[39]  Qin Lin,et al.  A unified algorithm for principal and minor components extraction , 1998, Neural Networks.

[40]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[41]  Richard I. Hartley,et al.  Kruppa's Equations Derived from the Fundamental Matrix , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Josef Kittler,et al.  On the correspondence problem for wide angular separation of non-coplanar points , 1998, Image Vis. Comput..