Infrared measurements of energy transfer from energetic materials to steel substrates

[1]  M. Pantoya,et al.  Fast reactions with nano- and micrometer aluminum: A study on oxidation versus fluorination , 2008 .

[2]  S. Son,et al.  Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3) , 2007 .

[3]  Dustin T. Osborne,et al.  EFFECT OF AL PARTICLE SIZE ON THE THERMAL DEGRADATION OF AL/TEFLON MIXTURES , 2007 .

[4]  M. Brewster,et al.  Radiative Properties of MoO3 and Al Nanopowders From Light-Scattering Measurements , 2007 .

[5]  A. Gash,et al.  Combustion Wave Speeds of Sol−Gel-Synthesized Tungsten Trioxide and Nano-Aluminum: The Effect of Impurities on Flame Propagation , 2006 .

[6]  A. H. Ucisik,et al.  Hard iron boride (Fe2B) on 99.97 wt% pure iron , 2006 .

[7]  Blaine W. Asay,et al.  Combustion velocities and propagation mechanisms of metastable interstitial composites , 2005 .

[8]  A. Gash,et al.  Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique , 2005 .

[9]  M. Pantoya,et al.  Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites , 2005 .

[10]  M. Zachariah,et al.  Enhancing the Rate of Energy Release from NanoEnergetic Materials by Electrostatically Enhanced Assembly , 2004 .

[11]  M. Pantoya,et al.  Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide , 2004 .

[12]  R. Ye,et al.  Research on self-propagating eutectic boriding , 2002 .

[13]  Fran Cverna,et al.  ASM ready reference : thermal properties of metals , 2002 .

[14]  Z. A. Munir,et al.  Thermite reactions: their utilization in the synthesis and processing of materials , 1993, Journal of Materials Science.

[15]  Richard N. White,et al.  Building structural design handbook , 1987 .