Fast Template Matching With Polynomials

Template matching is widely used for many applications in image and signal processing. This paper proposes a novel template matching algorithm, called algebraic template matching. Given a template and an input image, algebraic template matching efficiently calculates similarities between the template and the partial images of the input image, for various widths and heights. The partial image most similar to the template image is detected from the input image for any location, width, and height. In the proposed algorithm, a polynomial that approximates the template image is used to match the input image instead of the template image. The proposed algorithm is effective especially when the width and height of the template image differ from the partial image to be matched. An algorithm using the Legendre polynomial is proposed for efficient approximation of the template image. This algorithm not only reduces computational costs, but also improves the quality of the approximated image. It is shown theoretically and experimentally that the computational cost of the proposed algorithm is much smaller than the existing methods.

[1]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[2]  Steven L. Tanimoto,et al.  Template matching in pyramids , 1981 .

[3]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[4]  Laurent Moll,et al.  Real time correlation-based stereo: algorithm, implementations and applications , 1993 .

[5]  Feng Wu,et al.  Very Fast Template Matching , 2002, ECCV.

[6]  Takeo Kanade,et al.  Use of Fourier and Karhunen-Loeve decomposition for fast pattern matching with a large set of templates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  J. P. Lewis,et al.  Fast Template Matching , 2009 .

[9]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[10]  Luigi di Stefano,et al.  Fast template matching using bounded partial correlation , 2003, Machine Vision and Applications.

[11]  Hiroshi Murase,et al.  Focused color intersection with efficient searching for object extraction , 1997, Pattern Recognit..

[12]  G. Arfken Mathematical Methods for Physicists , 1967 .

[13]  David B. Cooper,et al.  Improving the stability of algebraic curves for applications , 2000, IEEE Trans. Image Process..

[14]  Kidiyo Kpalma,et al.  An automatic image registration for applications in remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Mohammad Gharavi-Alkhansari,et al.  A fast globally optimal algorithm for template matching using low-resolution pruning , 2001, IEEE Trans. Image Process..

[16]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[17]  Luigi di Stefano,et al.  A fast area-based stereo matching algorithm , 2004, Image Vis. Comput..

[18]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[19]  G. Arfken,et al.  Mathematical methods for physicists 6th ed. , 1996 .

[20]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Hanchuan Peng,et al.  Document Image Recognition Based on Template Matching of Component Block Projections , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Roger M. Dufour,et al.  Template matching based object recognition with unknown geometric parameters , 2002, IEEE Trans. Image Process..

[23]  J. Deutscher,et al.  Nonlinear model simplification using L 2-optimal bilinearization , 2005 .

[24]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[25]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[26]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[27]  Azriel Rosenfeld,et al.  Two-Stage Template Matching , 1977, IEEE Transactions on Computers.