Metamodeling: a state of the art review

The simulation community has used metamodels to study the behavior of computer simulations for over twenty-five years. The most popular techniques have been based on parametric polynomial response surface approximations. In this state of the art review, we present recent developments in this area, with a particular focus on new developments in the experimental designs employed.

[1]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[2]  C. Taylor Simulation methods to estimate smoothing parameters in image reconstruction , 1994 .

[3]  Leo Breiman,et al.  [The ∏ Method for Estimating Multivariate Functions from Noisy Data]: Response , 1991 .

[4]  M. Deaton,et al.  Response Surfaces: Designs and Analyses , 1989 .

[5]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[6]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[7]  Lee W. Schruben,et al.  An experimental procedure for simulation response surface model identification , 1987, CACM.

[8]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[9]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[10]  Chong Gu Adaptive Spline Smoothing in Non-Gaussian Regression Models , 1990 .

[11]  Douglas J. Morrice,et al.  The effects of batching on the power of the test for frequency domain methodology , 1991, 1991 Winter Simulation Conference Proceedings..

[12]  R. Eubank,et al.  Confidence regions in non-parametric regression , 1994 .

[13]  Lee W. Schruben,et al.  Driving Frequency Selection for Frequency Domain Simulation Experiments , 1991, Oper. Res..

[14]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[15]  Lee W. Schruben,et al.  Simulation Factor Screening Using Harmonic Analysis , 1993 .

[16]  T. J. Mitchell,et al.  Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .

[17]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[18]  Henry P. Wynn,et al.  [Design and Analysis of Computer Experiments]: Rejoinder , 1989 .

[19]  J.P.C. Kleijnen,et al.  Optimal design of simulation experiments with nearly saturated queues , 1995 .

[20]  Arnold H. Buss System identification using frequency domain methodology , 1990, 1990 Winter Simulation Conference Proceedings.

[21]  Nira Dyn,et al.  Optimal distribution of knots for tensor-product spline approximation , 1991 .

[22]  G. Wahba Partial and interaction spline models for the semiparametric estimation of functions of several variables , 1986 .

[23]  Max D. Morris,et al.  The spatial correlation function approach to response surface estimation , 1992, WSC '92.

[24]  Xingping Sun Solvability of multivariate interpolation by radial or related function , 1993 .

[25]  J. Friedman Multivariate adaptive regression splines , 1990 .

[26]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[27]  J. Kleijnen Statistical tools for simulation practitioners , 1986 .

[28]  Lee W. Schruben,et al.  Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments , 1978 .

[29]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[30]  J. Ward,et al.  On the sensitivity of radial basis interpolation to minimal data separation distance , 1992 .

[31]  James R. Wilson,et al.  Validation of Simulation Analysis Methods for the Schruben-Margolin Correlation-Induction Strategy , 1992, Oper. Res..

[32]  J. Kleijnen,et al.  Two-stage versus sequential sample-size determination in regression analysis of simulation experiments , 1992 .

[33]  Jeffrey D. Tew,et al.  Heuristic diagnostics for the presence of pure error in computer simulation models , 1990, 1990 Winter Simulation Conference Proceedings.

[34]  P. Lewis,et al.  Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines (MARS) , 1991 .

[35]  E. M. Hartwell Boston , 1906 .

[36]  E. Grosse Tensor spline approximation , 1980 .

[37]  G. Wahba Spline models for observational data , 1990 .

[38]  Geoffrey M. Laslett,et al.  Kriging and Splines: An Empirical Comparison of their Predictive Performance in Some Applications , 1994 .

[39]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[40]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[41]  A. Stein,et al.  Nested sampling for estimating spatial semivariograms compared to other designs , 1994 .

[42]  J. Hoschek,et al.  Scattered Data Interpolation , 1992 .

[43]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[44]  Joan M. Donohue,et al.  Simulation Designs and Correlation Induction for Reducing Second-Order Bias in First-Order Response Surfaces , 1993, Oper. Res..

[45]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[46]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[47]  S. M. Handcock On cascading latin hypercube designs and additive models for experiments , 1991 .

[48]  Claude Dennis Pegden,et al.  Statistical Analysis for Use with the Schruben and Margolin Correlation Induction Strategy , 1987, Oper. Res..

[49]  M. G. Cox,et al.  A knot placement strategy for least squares spline fitting based on the use of local polynomial approximations , 1990 .

[50]  M. D. Wilkinson,et al.  Management science , 1989, British Dental Journal.

[51]  W. Härdle Applied Nonparametric Regression , 1991 .

[52]  Nira Dyn,et al.  Interpolation of scattered Data by radial Functions , 1987, Topics in Multivariate Approximation.

[53]  Russell R. Barton,et al.  Metamodels for simulation input-output relations , 1992, WSC '92.

[54]  Richard Franke,et al.  Knot Selection for Least Squares Thin Plate Splines , 1992, SIAM J. Sci. Comput..

[55]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .

[56]  Joan M. Donohue,et al.  A sequential experimental design procedure for the estimation of first- and second-order simulation metamodels , 1993, TOMC.