Semiconducting Pavonites CdMBi4Se8 (M = Sn and Pb) and Their Thermoelectric Properties

Two new compounds CdPbBi4Se8 and CdSnBi4Se8 adopt the pavonite structure type and crystallize in the monoclinic space group C2/m with a = 13.713(3) A, b = 4.1665(8) A, c = 15.228(3) A, β = 115.56(3)° for CdPbBi4Se8; a = 13.679 A, b = 4.153 A, c = 15.127 A, β = 115.51° for CdSnBi4Se8. Their crystal structures are composed of two different types of polyhedral slabs, one containing a mixture of one octahedron [MSe6] block and paired squared pyramids [MSe5], while the other forms distorted galena-type (or NaCl-type) lattices with three [MSe6] octahedral chains (M = Pb, Cd, Bi, Sn). Both CdPbBi4Se8 and CdSnBi4Se8 are stable up to ∼970 K. Density functional theory (DFT) calculations show that both CdPbBi4Se8 and CdSnBi4Se8 are indirect band gap semiconductors. DFT phonon dispersion calculations performed on CdSnBi4Se8 give valuable insights as to the origin of the observed low experimental lattice thermal conductivities of ∼0.58 W m–1 K–1 at 320 K. The title compounds exhibit n-type conduction, and they exhibit...

[1]  M. Kanatzidis,et al.  The Two-Dimensional AxCdxBi4-xQ6 (A = K, Rb, Cs; Q = S, Se): Direct Bandgap Semiconductors and Ion-Exchange Materials. , 2017, Journal of the American Chemical Society.

[2]  Jing Zhao,et al.  High Thermoelectric Performance in Electron-Doped AgBi3S5 with Ultralow Thermal Conductivity. , 2017, Journal of the American Chemical Society.

[3]  K. Poeppelmeier,et al.  Chemistry-Inspired Adaptable Framework Structures. , 2017, Accounts of chemical research.

[4]  Yue Chen,et al.  Integrating Band Structure Engineering with All‐Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System , 2017 .

[5]  C. Uher,et al.  Crystal Structure and Thermoelectric Properties of the 7,7L Lillianite Homologue Pb6Bi2Se9. , 2017, Inorganic chemistry.

[6]  M. Kanatzidis,et al.  Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016, Angewandte Chemie.

[7]  M. Kanatzidis,et al.  Dynamic Stereochemical Activity of the Sn(2+) Lone Pair in Perovskite CsSnBr3. , 2016, Journal of the American Chemical Society.

[8]  Ctirad Uher,et al.  Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe , 2016, Nature Communications.

[9]  G. J. Snyder,et al.  Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-Type Polycrystalline SnSe. , 2016, Journal of the American Chemical Society.

[10]  M. Kanatzidis,et al.  Computational Prediction of High Thermoelectric Performance in Hole Doped Layered GeSe , 2016 .

[11]  M. Kanatzidis,et al.  Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. , 2016, Journal of the American Chemical Society.

[12]  Qi Zhang,et al.  Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges   , 2016 .

[13]  Dipanshu Bansal,et al.  Orbitally driven giant phonon anharmonicity in SnSe , 2015, Nature Physics.

[14]  D. Morelli,et al.  Solvothermal Synthesis of Tetrahedrite: Speeding Up the Process of Thermoelectric Material Generation. , 2015, ACS applied materials & interfaces.

[15]  E. Müller,et al.  Thermoelectric transport and microstructure of optimized Mg2Si0.8Sn0.2 , 2015 .

[16]  M. Kanatzidis,et al.  Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. , 2015, Journal of the American Chemical Society.

[17]  G. J. Snyder,et al.  Characterization of Lorenz number with Seebeck coefficient measurement , 2015 .

[18]  M. Kanatzidis,et al.  Low lattice thermal conductivity in Pb5Bi6Se14, Pb3Bi2S6, and PbBi2S4: promising thermoelectric materials in the cannizzarite, lillianite, and galenobismuthite homologous series , 2014 .

[19]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[20]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[21]  Zhifu Liu,et al.  Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection , 2013 .

[22]  V. Petříček,et al.  Conspicuous variation of the lattice unit cell in the pavonite homologous series and its relation with cation/anion occupational modulations , 2013 .

[23]  V. Ozoliņš,et al.  High Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedrites , 2013 .

[24]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[25]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[26]  M. Kanatzidis,et al.  Sb and Se substitution in CsBi 4Te 6: The semiconductors CsM 4Q 6 (M = Bi, Sb; Q = Te, Se), Cs 2Bi 10Q 15, and CsBi 5Q 8 , 2012 .

[27]  V. Ozoliņš,et al.  First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors , 2012 .

[28]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[29]  M. Kanatzidis,et al.  Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands , 2010, 1007.1637.

[30]  P. Poudeu,et al.  Crystal structure and physical properties of the quaternary manganese-bearing pavonite homologue Mn1.34Sn6.66Bi8Se20 , 2010 .

[31]  M. Kanatzidis,et al.  On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. , 2010, Journal of the American Chemical Society.

[32]  M. Kanatzidis,et al.  Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. , 2010, Journal of the American Chemical Society.

[33]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[34]  M. Kanatzidis,et al.  Role of K/Bi disorder in the electronic structure of β -K2 Bi8 Se13 , 2009 .

[35]  Shyue-Ming Jang,et al.  Synthesis and characterization of quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 , 2009 .

[36]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[37]  M. Kanatzidis,et al.  A new chalcogenide homologous series A2[M(5+n)Se(9+n)] (A = Rb, Cs; M = Bi, Ag, Cd). , 2006, Chemical communications.

[38]  M. Kanatzidis,et al.  Tropochemical cell-twinning in the new quaternary bismuth selenides KxSn(6-2x)Bi(2+x)Se9 and KSn5Bi5Se13. , 2003, Inorganic chemistry.

[39]  Donald T. Morelli,et al.  Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .

[40]  Z. H. Dughaish Lead telluride as a thermoelectric material for thermoelectric power generation , 2002 .

[41]  M. Kanatzidis,et al.  CsMBi3Te6 and CsM2Bi3Te7 (M ) Pb, Sn): New Thermoelectric Compounds with Low-Dimensional Structures , 2002 .

[42]  M. Kanatzidis,et al.  Structure and thermoelectric properties of the new quaternary bismuth selenides A(1-x)M(4-x)Bi(11+x)Se21 (A = K and Rb and Cs; M = Sn and Pb)--members of the grand homologous series Km(M6Se8)m(M(5+n)Se(9+n)). , 2001, Chemistry.

[43]  Eugene E. Haller,et al.  Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  E. Makovicky,et al.  The crystal structure of synthetic pavonite, AgBi 3 S 5 , and the definition of the pavonite homologous series , 1977 .

[47]  Xianli Su,et al.  Multi‐Scale Microstructural Thermoelectric Materials: Transport Behavior, Non‐Equilibrium Preparation, and Applications , 2017, Advanced materials.

[48]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[49]  M. Kanatzidis,et al.  Cs1-xSn1-xBi9+Se15 and Cs1.5-3xBi9.5+xSe15: members of the homologous superseries Am[M1+lSe2+l]2m[M1 + 2l+nSe3 + 3l+n] (A = alkali metal, M = Sn and Bi) allowing structural evolution in three different dimensions. , 2001, Chemical communications.