High-Field Characterization of Piezoelectric and Magnetostrictive Actuators

High-field theoretical and experimental analysis of piezoelectric and magnetostrictive actuators is presented. First, the analysis of a piezoelectric stack actuator (PiezoSystems Jena PAHL 120/20) is described. A theoretical model based on the linear theory of piezoelectricity is developed. Extensive experiments were conducted, aimed at lowfrequency dynamic electro-mechanical behavior characterization. Curve fitting procedures are used to adjust the model coefficients for various load levels. Through comparison with experimental data, the model is adjusted to include nonlinear terms related to higher losses on the unloading cycle. Second, the impedance analysis of a magnetostrictive actuator (Etrema AA140J025) is described. Linear piezomagnetism is assumed, as an approximation to nonlinear magnetostrictive behavior about a bias point. Low-field and high-field impedance measurements were performed, revealing left shifting of the actuator resonance as the power is increased. Model tuning of the impedance model on the experimental data showed material parameters trends similar with those reported in the literature. Although the numerical values developed during this phenomenological study are particular for the actuators under consideration, the characterization approach can be extended to analysis of other actuators of this type.

[1]  B. A. Calhoun,et al.  Ferromagnetic materials , 1955 .

[2]  Don Berlincourt,et al.  Effects of High Static Stress on the Piezoelectric Properties of Transducer Materials , 1961 .

[3]  H. Krueger,et al.  Stress Sensitivity of Piezoelectric Ceramics: Part 1. Sensitivity to Compressive Stress Parallel to the Polar Axis , 1967 .

[4]  R. Holland,et al.  Representation of Dielectric, Elastic, and Piezoelectric Losses by Complex Coefficients , 1967, IEEE Transactions on Sonics and Ultrasonics.

[5]  H. Krueger,et al.  Stress Sensitivity of Piezoelectric Ceramics: Part 2. Heat Treatment , 1968 .

[6]  Benjamin Wilson A treatise on electricity , 1973 .

[7]  A. E. Clark,et al.  Magnetostrictive Rare Earth-Fe2 Compounds , 1988 .

[8]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[9]  M. Goodfriend,et al.  Adaptive Characteristics of the Magnetostrictive Alloy, Terfenol-D, for Active Vibration Control , 1992 .

[10]  Trémolet de Lacheisserie,et al.  Magnetostriction : theory and applications of magnetoelasticity , 1993 .

[11]  Arthur E. Clark,et al.  High Power Rare Earth Magnetostrictive Materials , 1993 .

[12]  Craig A. Rogers,et al.  Coupled Electro-Mechanical Analysis of Adaptive Material Systems — Determination of the Actuator Power Consumption and System Energy Transfer , 1994 .

[13]  Friedrich K Straub,et al.  Design of a smart material actuator for rotor control , 1995, Smart Structures.

[14]  G. Carman,et al.  Nonlinear Constitutive Relations for Magnetostrictive Materials with Applications to 1-D Problems , 1995 .

[15]  Alison B. Flatau,et al.  One-Dimensional Analytical Constant Parameter Linear Electromagnetic-Magnetomechanical Models of a Cylindrical Magnetostrictive (Terfenol-D) Transducer , 1995 .

[16]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[17]  Craig A. Rogers,et al.  Dynamic transduction characterization of magnetostrictive actuators , 1996 .

[18]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[19]  Victor Giurgiutiu,et al.  Dynamic Power and Energy Capabilities of Commercially-Available Electro-Active Induced-Strain Actuators , 1996 .

[20]  K. Uchino,et al.  Change of the weak-field properties of Pb(ZrTi)O_3 piezoceramics with compressive uniaxial stresses and its links to the effect of dopants on the stability of the polarizations in the materials , 1997 .

[21]  Daining Fang,et al.  Micromechanics simulation of ferroelectric polarization switching , 1997 .

[22]  Friedrich K Straub,et al.  Design of a smart material actuator for rotor control , 1997 .

[23]  Kenji Uchino,et al.  Crystal Orientation Dependence of Piezoelectric Properties in Lead Zirconate Titanate: Theoretical Expectation for Thin Films , 1997 .

[24]  Victor Giurgiutiu,et al.  Power and Energy Characteristics of Solid-State Induced-Strain Actuators for Static and Dynamic Applications , 1997 .

[25]  A R McGowan,et al.  Piezoelectric power requirements for active vibration control , 1997, Smart Structures.

[26]  Frederick T. Calkins,et al.  Identification and analysis of fundamental issues in Terfenol-D transducer modeling , 1998, Smart Structures.

[27]  Frederick T. Calkins,et al.  Terfenol-D elastomagnetic properties under varied operating conditions using hysteresis loop analysis , 1998, Smart Structures.

[28]  Ralph C. Smith,et al.  A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators , 1998 .

[29]  Stephen C. Hwang,et al.  A finite element model of ferroelectric polycrystals , 1998 .

[30]  Shoko Yoshikawa,et al.  Monolithic piezoelectric actuators and vibration dampers with interdigital electrodes , 1999, Smart Structures.

[31]  Inderjit Chopra,et al.  Development and validation of a refined piezostack-actuated trailing-edge flap actuator for a helicopter rotor , 1999, Smart Structures.

[32]  H. Krueger,et al.  Stress Sensitivity of Piezoelectric Ceramics : 1 Part 3 . Sensitivity to Compressive StressIPerpendicular to the Polar Axis , 1999 .

[33]  Christopher S. Lynch,et al.  NONLINEAR CONSTITUTIVE BEHAVIOR OF SOFT AND HARD PZT: EXPERIMENTS AND MODELING , 1999 .

[34]  Alison B. Flatau,et al.  Blocked force investigation of a Terfenol-D transducer , 1999, Smart Structures.

[35]  Ali H. Nayfeh,et al.  Terfenol-D Nonlinear Vibration Absorber , 1999 .

[36]  G. Engdahl Handbook of Giant Magnetostrictive Materials , 1999 .

[37]  F. Straub,et al.  Durability characterization of piezoelectric stack actuators under combined electro-mechanical loading , 2000 .

[38]  Nesbitt W. Hagood,et al.  Compression depolarization of PZT piezoelectric materials under high electromechanical driving levels , 2000, Smart Structures.

[39]  Seung Eek Eagle Park,et al.  Comparison of actuator properties for piezoelectric and electrostrictive materials , 2000, Smart Structures.

[40]  Stephen C. Hwang,et al.  Finite element model of ferroelectric/ferroelastic polycrystals , 2000, Smart Structures.

[41]  Alison B. Flatau,et al.  An Energy-Based Hysteresis Model for Magnetostrictive Transducers , 1997 .

[42]  Inderjit Chopra,et al.  Fundamental Behavior of Piezoceramic Sheet Actuators , 2000 .

[43]  Zoubeida Ounaies,et al.  Electrical properties and power considerations of a piezoelectric actuator , 2000 .

[44]  Guomao Yang,et al.  Uniaxial stress dependence of the piezoelectric properties of lead zirconate titanate ceramics , 2000, ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076).

[45]  F. Straub,et al.  Response of piezoelectric stack actuators under combined electro-mechanical loading , 2001 .

[46]  Herbert Balke,et al.  On the local and average energy release in polarization switching phenomena , 2001 .

[47]  Alison B. Flatau,et al.  Terfenol-D tunable mechanical resonator , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[48]  Radu O. Pomîrleanu INDUCED STRAIN ACTUATORS FOR SMART-STRUCTURES APPLICATIONS , 2001 .

[49]  David B. Domzalski,et al.  Development of a piezoelectric actuator for trailing edge flap control of full scale rotor blades , 2001 .

[50]  Norman A. Fleck,et al.  Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .

[51]  Alison B. Flatau,et al.  Characterization of a small Terfenol-D transducer in mechanically blocked configuration , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[52]  A. Flatau,et al.  Investigation of a Terfenol-D tunable mechanical resonator , 2001 .

[53]  Pavel M. Chaplya,et al.  Dielectric and piezoelectric response of lead zirconate–lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion , 2001 .

[54]  Pavel M. Chaplya,et al.  Compression of piezoelectric ceramic at constant electric field: Energy absorption through non-180° domain-wall motion , 2002 .