Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors.

[1]  C. Hsieh,et al.  Improved storage capacity and rate capability of Fe3O4–graphene anodes for lithium-ion batteries , 2011 .

[2]  S. Behera Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for Li ion battery anodes. , 2011, Chemical communications.

[3]  Di Zhang,et al.  Sonochemical synthesis of TiO(2 nanoparticles on graphene for use as photocatalyst. , 2011, Ultrasonics sonochemistry.

[4]  Chunzhong Li,et al.  Preparation and Application of Mediator‐Free H2O2 Biosensors of Graphene‐Fe3O4 Composites , 2011 .

[5]  S. Li,et al.  Large-scale synthesis of hierarchical alpha-FeOOH flowers by ultrasonic-assisted hydrothermal route , 2011 .

[6]  L. Luong,et al.  Structure-property relations of 55 nm particle-toughened epoxy , 2010 .

[7]  Jintu Fan,et al.  The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding , 2010 .

[8]  Guangmin Zhou,et al.  Graphene-Wrapped Fe(3)O(4) Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries , 2010 .

[9]  Q. Li,et al.  Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries , 2010 .

[10]  S. Laurent,et al.  Superparamagnetic Iron Oxide Nanoparticles , 2017 .

[11]  Lihua Zhu,et al.  Sono-assisted preparation of highly-efficient peroxidase-like Fe(3)O(4) magnetic nanoparticles for catalytic removal of organic pollutants with H(2)O(2). , 2010, Ultrasonics sonochemistry.

[12]  N. Popa,et al.  Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties. , 2010, Journal of nanoscience and nanotechnology.

[13]  Jun Liu,et al.  Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. , 2009, Biosensors & bioelectronics.

[14]  Wensheng Yang,et al.  Graphite nanosheet-based composites for mediator-free H2O2 biosensor. , 2009, The Analyst.

[15]  Yu Wang,et al.  Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices , 2009 .

[16]  Jianwei Guo,et al.  Direct electrochemical behavior of hemoglobin at surface of Au@Fe3O4 magnetic nanoparticles , 2009 .

[17]  Chen-Zhong Li,et al.  The effect of electrochemical pretreatment on the sensing performance of single walled carbon nanotubes. , 2009, Journal of nanoscience and nanotechnology.

[18]  Yongsheng Chen,et al.  Superparamagnetic graphene oxide–Fe3O4nanoparticles hybrid for controlled targeted drug carriers , 2009 .

[19]  Aicheng Chen,et al.  A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. , 2008, Biosensors & bioelectronics.

[20]  Haili Zhang,et al.  A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode , 2008 .

[21]  M. Číž,et al.  Nitric oxide sensor based on carbon fiber covered with nickel porphyrin layer deposited using optimized electropolymerization procedure. , 2007, Bioelectrochemistry.

[22]  A. Salimi,et al.  Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles , 2006 .

[23]  J. Durrant,et al.  Nitric Oxide Biosensors Based on the Immobilization of Hemoglobin on Mesoporous Titania Electrodes , 2006 .

[24]  Guo-Li Shen,et al.  Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. , 2005, Journal of inorganic biochemistry.

[25]  Hongyuan Chen,et al.  Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film , 2005 .

[26]  G. Rivas,et al.  Glucose biosensors based on the immobilization of copper oxide and glucose oxidase within a carbon paste matrix. , 2005, Talanta.

[27]  Zeev Rosenzweig,et al.  Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing , 2004, Analytical and bioanalytical chemistry.

[28]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  Itamar Willner,et al.  Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. , 2004, Angewandte Chemie.

[30]  J. Liu,et al.  One-step synthesis of FePt nanoparticles with tunable size. , 2004, Journal of the American Chemical Society.

[31]  T. Tunkasiri,et al.  Analysis of X-Ray Diffraction Line Profiles of Lead Zirconate Titanate Using the Fourier Method , 2004 .

[32]  N. Perkas,et al.  Using sonochemical methods for the preparation of mesoporous materials and for the deposition of catalysts into the mesopores. , 2001, Chemistry.

[33]  D Compagnone,et al.  Construction and analytical characterization of Prussian-Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. , 2001, Analytical chemistry.

[34]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[35]  Swee Ngin Tan,et al.  Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide , 1996 .

[36]  A. Gedanken,et al.  Synthesis of morphologically controlled lanthanumcarbonate particles using ultrasound irradiation , 2001 .

[37]  Timothy J. Mason,et al.  Quantifying sonochemistry: Casting some light on a ‘black art’ , 1992 .