On the Intertrade Waiting-time Distribution

Continuous-time random walks can be used as phenomenological models of high-frequency time dynamics in financial markets. Empirical analyses show that the intertrade durations (or waiting-times) are non-exponentially distributed. This fact imposes constraints on agent-based models of financial markets based on continuousdouble auctions.

[1]  Hans-Peter Scheffler,et al.  Governing equations and solutions of anomalous random walk limits. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  G. Zumbach Considering Time as the Random Variable: The First Hitting Time , 1998 .

[3]  Tina Hviid Rydberg,et al.  A Modelling Framework for the Prices and Times of Trades Made on the New York Stock Exchange , 1999 .

[4]  Revisiting the Derivation of the Fractional Diffusion Equation , 2002, cond-mat/0210166.

[5]  Enrico Scalas,et al.  Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Robert F. Engle,et al.  Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model , 1997 .

[7]  C. Goodhart,et al.  High frequency data in financial markets: Issues and applications , 1997 .

[8]  J. McCauley Dynamics of Markets: Scaling the ivory tower of finance , 2004 .

[9]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[10]  Maureen O'Hara,et al.  Making Market Microstructure Matter , 1999 .

[11]  Anders Martin-Löf,et al.  On the mathematical theory of risk , 1994 .

[12]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[13]  S. James Press,et al.  A Compound Events Model for Security Prices , 1967 .

[14]  H. Cramér On the Mathematical Theory of Risk , 1994 .

[15]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[16]  H. Luckock A steady-state model of the continuous double auction , 2003 .

[17]  Ryszard Kutner,et al.  Stochastic simulations of time series within Weierstrass–Mandelbrot walks , 2003 .

[18]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[19]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[20]  Enrico Scalas,et al.  REVISITING THE DERIVATION OF THE FRACTIONAL DIFFUSION EQUATION , 2003 .

[21]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[22]  Ananth N. Madhavan,et al.  Market Microstructure: A Survey , 2000 .

[23]  G. Weiss,et al.  Continuous-time random-walk model for financial distributions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Marchesi,et al.  Agent-based simulation of a financial market , 2001, cond-mat/0103600.

[25]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[26]  L. Bauwens,et al.  The Logarithmic Acd Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks , 2000 .

[27]  A. Lo,et al.  An Econometric Analysis of Nonsynchronous Trading , 1989 .

[28]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[29]  Christian Gourieroux,et al.  Autoregressive Gamma Processes , 2005 .

[30]  Tina Hviid Rydberg,et al.  Modelling Trade-by-Trade Price Movements of Multiple Assets Using Multivariate Compound Poisson Processes , 1999 .

[31]  W.Th.F. den Hollander,et al.  Random walks on lattices with points of two colors. II. Some rigorous inequalities for symmetric random walks , 1985 .

[32]  Rudolf Hilfer,et al.  Stochastische Modelle für die betriebliche Planung , 1985 .

[33]  A. Lo,et al.  Econometric Models of Limit-Order Executions , 1997 .

[34]  Neil Shephard,et al.  Dynamics of Trade-by-Trade Price Movements: Decomposition and Models , 1999 .