The search for chromatically unique graphs - II

The number of vertex-colourings of a simple graphG in not more thanλ colours is a polynomial inλ. This polynomial, denoted byP(G, λ), is called the chromatic polynomial ofG. A graphG is said to be chromatically unique, in shortχ-unique, ifH ≅ G for any graphH withP(H, λ) = P(G, λ). Since the appearance of the first paper onχ-unique graphs by Chao and Whitehead in 1978, various families of and several results on such graphs have been obtained successively, especially during the last five years. It is the aim of this expository paper to give a survey on most of the works done onχ-unique graphs. A number of related problems and conjectures are also included.

[1]  G. L. Chia On the join of graphs and chromatic uniqueness , 1995, J. Graph Theory.

[2]  Beatrice Loerinc,et al.  Chromatic polynomaials for regular graphs and modified wheels , 1981, J. Comb. Theory, Ser. B.

[3]  H. Whitney A logical expansion in mathematics , 1932 .

[4]  G. L. Chia The chromaticity of wheels with a missing spoke , 1990, Discret. Math..

[5]  Earl Glen Whitehead,et al.  Classification of chromatically unique graphs having quadratic σ-polynomials , 1987, J. Graph Theory.

[6]  Ioan Tomescu,et al.  On the sum of all distances in chromatic blocks , 1994 .

[7]  Feng Ming Dong,et al.  On the chromatic uniqueness of the graph W(n, n-2) + Kk , 1995, Discret. Math..

[8]  Lian-Chang Zhao,et al.  Cutpoints and the chromatic polynomial , 1984, J. Graph Theory.

[9]  Lian-Chang Zhao,et al.  Chromatic uniqueness and equivalence of K4 homeomorphs , 1984, J. Graph Theory.

[10]  Chung-Piaw Teo,et al.  The chromatic uniqueness of certain broken wheels , 1991, Discret. Math..

[11]  E. J. Farrell,et al.  On chromatic coefficients , 1980, Discret. Math..

[12]  Earl Glen Whitehead Chromatic polynomials of generalized trees , 1988, Discret. Math..

[13]  Yee-Hock Peng Another family of chromatically unique graphs , 1995, Graphs Comb..

[14]  Chung-Piaw Teo,et al.  The number of shortest cycles and the chromatic uniqueness of a graph , 1992, J. Graph Theory.

[15]  Douglas R. Woodall,et al.  Chromatic polynomials, polygon trees, and outerplanar graphs , 1992, J. Graph Theory.

[16]  Chong-Yun Chao,et al.  On chromatic equivalence of graphs , 1978 .

[17]  Beatrice Loerinc Chromatic uniqueness of the generalized θ-graph , 1978, Discret. Math..

[18]  R. Read An introduction to chromatic polynomials , 1968 .

[19]  Kee L. Teo,et al.  The search for chromatically unique graphs , 1990, Graphs Comb..

[20]  Qingyan Du On σ-equivalence and k-equivalence of graphs , 1996 .

[21]  Feng Ming Dong,et al.  On the structure and chromaticity of graphs in which any two colour classes induce a tree , 1997, Discret. Math..

[22]  Y. H. Peng On the chromatic uniqueness of certain bipartite graphs , 1991, Discret. Math..

[23]  Chung-Piaw Teo,et al.  The chromaticity of complete bipartite graphs with at most one edge deleted , 1990, J. Graph Theory.

[24]  Shaoji Xu,et al.  The chromaticity of s-bridge graphs and related graphs , 1994, Discret. Math..

[25]  F. M. Dong,et al.  On the chromatic uniqueness of the graphW(n, n − 2, k) , 1996, Graphs Comb..

[26]  Shaoji Xu,et al.  The chromaticity of wheels , 1984, Discret. Math..

[27]  Earl Glen Whitehead,et al.  The chromaticity of certain graphs with five triangles , 1993, Discret. Math..

[28]  Feng Ming Dong,et al.  On chromatic uniqueness of two infinite families of graphs , 1993, J. Graph Theory.

[29]  Ewa Drgas-Burchardt,et al.  Classes of chromatically unique graphs , 1993, Discret. Math..

[30]  Qingyan Du Chromaticity of the complements of paths and cycles , 1996, Discret. Math..

[31]  D. Frank Hsu,et al.  Graph Theory, Combinatorics, Algorithms, and Applications , 1991 .

[32]  R. Duffin Topology of series-parallel networks , 1965 .

[33]  W. A. Bassali Green's functions for thin perforated elastic slabs , 1960 .

[34]  Chong-Yun Chao,et al.  Chromatically unique graphs , 1979, Discret. Math..

[35]  E. G. Whitehead,et al.  Connections between the matching and chromatic polynomials , 1992 .

[36]  Pablo M. Salzberg,et al.  On the chromatic uniquenes of bipartite graphs , 1986, Discret. Math..

[37]  Shaoji Xu Chromaticity of a family of K4-homeomorphs , 1993, Discret. Math..

[38]  Chong-Yun Chao,et al.  On trees of polygons , 1985 .

[39]  Chung-Piaw Teo,et al.  Chromaticity of series-parallel graphs , 1996, Discret. Math..

[40]  Ruth A. Bari,et al.  Chromatic polynomials and whitney's broken circuits , 1977, J. Graph Theory.

[41]  Chia Gek Ling Some remarks on the chromatic uniqueness of graphs , 1988 .

[42]  Ioan Tomescu,et al.  On 3-colorings of bipartite p-threshold graphs , 1987, J. Graph Theory.

[43]  G. L. Chia A note on chromatic uniqueness of graphs , 1986 .

[44]  K. M. Koh,et al.  Two classes of chromatically unique graphs , 1990, Discret. Math..

[45]  N. Biggs Algebraic Graph Theory , 1974 .

[46]  Ruth A. Bari Chromatically equivalent graphs , 1974 .

[47]  Shaoji Xu Classes of chromatically equivalent graphs and polygon trees , 1994, Discret. Math..

[48]  Qingyan Du On sigma-polynomials and a class of chromatically unique graphs , 1993, Discret. Math..

[49]  Kee L. Teo,et al.  Chromatic classes of 2-connected (n, n + 3)-graphs with at least two triangles , 1994, Discret. Math..

[50]  Chia Gek Ling The chromaticity of some families of complete tripartite graphs , 1988 .

[51]  Mehdi Behzad,et al.  Graphs and Digraphs , 1981, The Mathematical Gazette.

[52]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[53]  Feng Ming Dong,et al.  All wheels with two missing consecutive spokes are chromatically unique , 1998, Discret. Math..

[54]  Shaoji Xu,et al.  The chromatic uniqueness of complete bipartite graphs , 1991, Discret. Math..

[55]  Chung-Piaw Teo,et al.  On chromatic uniqueness of uniform subdivisions of graphs , 1994, Discret. Math..

[56]  Chong-Yun Chao,et al.  On maximally saturated graphs , 1982, Discret. Math..