Multivariate copulas, quasi-copulas and lattices
暂无分享,去创建一个
[1] Manuel Úbeda-Flores,et al. Some new characterizations and properties of quasi-copulas , 2009, Fuzzy Sets Syst..
[2] José Juan Quesada-Molina,et al. Derivability of some operations on distribution functions , 1996 .
[3] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[4] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[5] R. Nelsen,et al. Some New Properties of Quasi-Copulas , 2002 .
[6] C. Sempi,et al. Sklar's theorem via regularization techniques , 2011 .
[7] Christian Eitzinger,et al. Triangular Norms , 2001, Künstliche Intell..
[8] Juan Fernández-Sánchez,et al. Sklar’s theorem obtained via regularization techniques , 2012 .
[9] Carles M. Cuadras,et al. Distributions With Given Marginals and Statistical Modelling , 2002 .
[10] Claudi Alsina,et al. On the characterization of a class of binary operations on distribution functions , 1993 .
[11] Bernard De Baets,et al. Extremes of the mass distribution associated with a trivariate quasi-copula , 2007 .
[12] Radko Mesiar,et al. Ordinal sums and idempotents of copulas , 2010 .
[13] R. Mesiar,et al. Aggregation operators: properties, classes and construction methods , 2002 .
[14] Holly Carley,et al. MAXIMUM AND MINIMUM EXTENSIONS OF FINITE SUBCOPULAS , 2002 .
[15] Radko Mesiar,et al. The lattice-theoretic structure of the sets of triangular norms and semi-copulas , 2008 .
[16] Manuel Úbeda-Flores,et al. Best-Possible Bounds on Sets of Multivariate Distribution Functions , 2005 .
[17] Manuel Úbeda-Flores,et al. Quasi-copulas and signed measures , 2010, Fuzzy Sets Syst..
[18] Roger B. Nelsen,et al. The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas , 2005 .
[19] R. Mesiar,et al. Aggregation operators: new trends and applications , 2002 .
[20] R. Nelsen. An Introduction to Copulas , 1998 .