Multivariate copulas, quasi-copulas and lattices

We investigate some properties of the partially ordered sets of multivariate copulas and quasi-copulas. Whereas the set of bivariate quasi-copulas is a complete lattice, which is order-isomorphic to the Dedekind-MacNeille completion of the set of bivariate copulas, we show that this is not the case in higher dimensions.

[1]  Manuel Úbeda-Flores,et al.  Some new characterizations and properties of quasi-copulas , 2009, Fuzzy Sets Syst..

[2]  José Juan Quesada-Molina,et al.  Derivability of some operations on distribution functions , 1996 .

[3]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[4]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[5]  R. Nelsen,et al.  Some New Properties of Quasi-Copulas , 2002 .

[6]  C. Sempi,et al.  Sklar's theorem via regularization techniques , 2011 .

[7]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[8]  Juan Fernández-Sánchez,et al.  Sklar’s theorem obtained via regularization techniques , 2012 .

[9]  Carles M. Cuadras,et al.  Distributions With Given Marginals and Statistical Modelling , 2002 .

[10]  Claudi Alsina,et al.  On the characterization of a class of binary operations on distribution functions , 1993 .

[11]  Bernard De Baets,et al.  Extremes of the mass distribution associated with a trivariate quasi-copula , 2007 .

[12]  Radko Mesiar,et al.  Ordinal sums and idempotents of copulas , 2010 .

[13]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[14]  Holly Carley,et al.  MAXIMUM AND MINIMUM EXTENSIONS OF FINITE SUBCOPULAS , 2002 .

[15]  Radko Mesiar,et al.  The lattice-theoretic structure of the sets of triangular norms and semi-copulas , 2008 .

[16]  Manuel Úbeda-Flores,et al.  Best-Possible Bounds on Sets of Multivariate Distribution Functions , 2005 .

[17]  Manuel Úbeda-Flores,et al.  Quasi-copulas and signed measures , 2010, Fuzzy Sets Syst..

[18]  Roger B. Nelsen,et al.  The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas , 2005 .

[19]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[20]  R. Nelsen An Introduction to Copulas , 1998 .