VARIABLE EVOLVED STARS AND YOUNG STELLAR OBJECTS DISCOVERED IN THE LARGE MAGELLANIC CLOUD USING THE SAGE SURVEY

We present initial results and source lists of variable sources in the Large Magellanic Cloud (LMC) for which we detect thermal infrared variability from the Surveying the Agents of a Galaxy's Evolution (SAGE) survey, which had two epochs of photometry separated by 3 months. The SAGE survey mapped a 7° × 7° region of the LMC using the Infrared Array Camera (IRAC) and the MIPS instruments on board Spitzer. Variable sources are identified using a combination of the IRAC 3.6, 4.5, 5.8, 8.0 μ bands and the MIPS 24 μ bands. An error-weighted flux difference between the two epochs is used to assess the variability. Of the ∼3 million sources detected at both epochs, we find ∼2000 variable sources for which we provide electronic catalogs. Most of the variable sources can be classified as asymptotic giant branch (AGB) stars. A large fraction (>66%) of the extreme AGB stars are variable and only smaller fractions of carbon-rich (6.1%) and oxygen-rich (2.0%) stars are detected as variable sources. We also detect a population of variable young stellar object candidates.

[1]  Linda J. Smith,et al.  SPITZER SAGE SURVEY OF THE LARGE MAGELLANIC CLOUD. III. STAR FORMATION AND ∼1000 NEW CANDIDATE YOUNG STELLAR OBJECTS , 2008 .

[2]  J. Blommaert,et al.  Luminosities and mass-loss rates of carbon stars in the Magellanic Clouds , 2007 .

[3]  T. Prusti,et al.  Long‐term infrared variability of the UX Ori‐type star SV Cep , 2006, astro-ph/0612270.

[4]  C. Leitherer,et al.  Spitzer SAGE Survey of the Large Magellanic Cloud. II. Evolved Stars and Infrared Color-Magnitude Diagrams , 2006, astro-ph/0608189.

[5]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[6]  H. J. Habing,et al.  AGB stars in the Magellanic Clouds II. The rate of star formation across the LMC , 2005, astro-ph/0509881.

[7]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[8]  S. Hawley,et al.  Long-Period Variables in the Large Magellanic Cloud: Results from MACHO and 2MASS , 2004, astro-ph/0410398.

[9]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[10]  Noordwijk,et al.  Long-term evolution of FU Orionis objects at infrared wavelengths , 2004, astro-ph/0408048.

[11]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[12]  G. Herbig,et al.  High-Resolution Spectroscopy of FU Orionis Stars , 2003, astro-ph/0306559.

[13]  M. Feast,et al.  Obscured asymptotic giant branch variables in the Large Magellanic Cloud and the period–luminosity relation , 2003, astro-ph/0302246.

[14]  M. Weinberg,et al.  Stellar Populations in the Large Magellanic Cloud from 2MASS , 2000, astro-ph/0003012.

[15]  V. Mannings,et al.  The Evolutionary Status of UX Orionis-Type Stars , 1997 .

[16]  Christopher W. Stubbs,et al.  The MACHO Project LMC Variable Star Inventory.II.LMC RR Lyrae Stars- Pulsational Characteristics and Indications of a Global Youth of the LMC , 1996 .

[17]  K. Stanek,et al.  Are the OGLE Microlenses in the Galactic Bar , 1994, astro-ph/9407010.

[18]  E. V. Heuvel,et al.  The Nature and Evolutionary Status of Herbig Ae/Be Stars , 1994 .

[19]  R. Harmon,et al.  The nature of the Galactic Bulge , 1987 .

[20]  L. Hartmann,et al.  On the nature of FU Orionis objects , 1985 .