Towards the Optimal Training of Cascades of Boosted Ensembles

Cascades of boosted ensembles have become a popular technique for face detection following their introduction by Viola and Jones. Researchers have sought to improve upon the original approach by incorporating new techniques such as alternative boosting methods, feature sets, etc. We explore several avenues that have not yet received adequate attention: global cascade learning, optimal ensemble construction, stronger weak hypotheses, and feature filtering. We describe a probabilistic model for cascade performance and its use in a fully-automated training algorithm.

[1]  James M. Rehg,et al.  Automatic cascade training with perturbation bias , 2004, CVPR 2004.

[2]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[3]  James M. Rehg,et al.  Fast Asymmetric Learning for Cascade Face Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Salvatore J. Stolfo,et al.  AdaCost: Misclassification Cost-Sensitive Boosting , 1999, ICML.

[5]  Michael Elad,et al.  Rejection based classifier for face detection , 2002, Pattern Recognit. Lett..

[6]  Rong Xiao,et al.  Boosting chain learning for object detection , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  Harry Shum,et al.  Kullback-Leibler boosting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[8]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[10]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[12]  Huitao Luo,et al.  Optimization design of cascaded classifiers , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Kai Ming Ting,et al.  A Comparative Study of Cost-Sensitive Boosting Algorithms , 2000, ICML.

[14]  Daniel Keren,et al.  Antifaces: A Novel, Fast Method for Image Detection , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  John Shawe-Taylor,et al.  Optimizing Classifers for Imbalanced Training Sets , 1998, NIPS.

[16]  James M. Rehg,et al.  Linear Asymmetric Classifier for cascade detectors , 2005, ICML.

[17]  Sayan Mukherjee,et al.  Feature reduction and hierarchy of classifiers for fast object detection in video images , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[18]  Paul A. Viola,et al.  Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade , 2001, NIPS.

[19]  James M. Rehg,et al.  Learning a Rare Event Detection Cascade by Direct Feature Selection , 2003, NIPS.

[20]  D. Geman,et al.  Hierarchical testing designs for pattern recognition , 2005, math/0507421.

[21]  Stan Z. Li,et al.  FloatBoost learning and statistical face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Andreas Ernst,et al.  Face detection with the modified census transform , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[23]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[24]  Kaizhu Huang,et al.  Learning classifiers from imbalanced data based on biased minimax probability machine , 2004, CVPR 2004.

[25]  F. Fleuret Fast Binary Feature Selection with Conditional Mutual Information , 2004, J. Mach. Learn. Res..

[26]  Michael Elad,et al.  Pattern Detection Using a Maximal Rejection Classifier , 2000, IWVF.

[27]  Shimon Ullman,et al.  Object recognition with informative features and linear classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[28]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Andrew Blake,et al.  Computationally efficient face detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[30]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.

[31]  Henry Schneiderman,et al.  Feature-centric evaluation for efficient cascaded object detection , 2004, CVPR 2004.

[32]  Arjun K. Gupta,et al.  Handbook of beta distribution and its applications , 2004 .

[33]  James M. Rehg,et al.  On the Design of Cascades of Boosted Ensembles for Face Detection , 2008, International Journal of Computer Vision.

[34]  Nuno Vasconcelos Feature selection by maximum marginal diversity: optimality and implications for visual recognition , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[35]  Yair Weiss,et al.  Learning object detection from a small number of examples: the importance of good features , 2004, CVPR 2004.