A review of underwater bio-mimetic propulsion: cruise and fast-start

[1]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[2]  Joseph C. S. Lai,et al.  Reynolds number, thickness and camber effects on flapping airfoil propulsion , 2011 .

[3]  Franz S. Hover,et al.  Effect of angle of attack profiles in flapping foil propulsion , 2004 .

[4]  M S Triantafyllou,et al.  In-line motion causes high thrust and efficiency in flapping foils that use power downstroke , 2010, Journal of Experimental Biology.

[5]  M. Triantafyllou,et al.  Wake mechanics for thrust generation in oscillating foils , 1991 .

[6]  G. Lauder,et al.  Prey capture in the chain pickerel, Esox niger: correlations between feeding and locomotor behavior , 1981 .

[7]  Adrian L. R. Thomas,et al.  Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency , 2003, Nature.

[8]  D. Weihs,et al.  The mechanism of rapid starting of slender fish. , 1973, Biorheology.

[9]  Webb Pw,et al.  The effect of size on the fast-start performance of rainbow trout Salmo cairdneri, and a consideration of piscivorous predator-prey interactions. , 1976 .

[10]  Michael S. Triantafyllou,et al.  Biomimetic survival hydrodynamics and flow sensing , 2015 .

[11]  C. Eloy Optimal Strouhal number for swimming animals , 2011, 1102.0223.

[12]  Neil Bose,et al.  Propulsive performance from oscillating propulsors with spanwise flexibility , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Shusheng Bi,et al.  Effect of spanwise flexibility on propulsion performance of a flapping hydrofoil at low Reynolds number , 2012 .

[14]  G. Lauder,et al.  The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street , 2003, Journal of Experimental Biology.

[15]  Hui Hu,et al.  Airfoil Thickness Effects on the Thrust Generation of Plunging Airfoils , 2012 .

[16]  Carlos E. S. Cesnik,et al.  Computational modeling of spanwise flexibility effects on flapping wing aerodynamics , 2009 .

[17]  Petros Koumoutsakos,et al.  C-start: optimal start of larval fish , 2012, Journal of Fluid Mechanics.

[18]  Neil Bose Performance of chordwise flexible oscillating propulsors using a time-domain panel method , 1995 .

[19]  Chongam Kim,et al.  Design of Flapping Airfoil for Optimal Aerodynamic Performance in Low-Reynolds Number Flows , 2006 .

[20]  Miguel R. Visbal,et al.  High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers , 2009 .

[21]  Joseph Katz,et al.  Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility , 1978, Journal of Fluid Mechanics.

[22]  G. Lauder,et al.  Passive and Active Flow Control by Swimming Fishes and Mammals , 2006 .

[23]  A. Smits,et al.  Scaling the propulsive performance of heaving flexible panels , 2013, Journal of Fluid Mechanics.

[24]  Silas Alben,et al.  Optimal flexibility of a flapping appendage in an inviscid fluid , 2008, Journal of Fluid Mechanics.

[25]  Sam Heathcote,et al.  Flexible flapping airfoil propulsion at low Reynolds numbers , 2005 .

[26]  Domenici,et al.  The kinematics and performance of fish fast-start swimming , 1997, The Journal of experimental biology.

[27]  M. Lighthill Large-amplitude elongated-body theory of fish locomotion , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  M. Koochesfahani Vortical patterns in the wake of an oscillating airfoil , 1987 .

[29]  Fotis Sotiropoulos,et al.  Hydrodynamics of the bluegill sunfish C-start escape response: three-dimensional simulations and comparison with experimental data , 2012, Journal of Experimental Biology.

[30]  J.-M. Miao,et al.  Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil , 2006 .

[31]  M. Lighthill Note on the swimming of slender fish , 1960, Journal of Fluid Mechanics.

[32]  Joseph Katz,et al.  Large amplitude unsteady motion of a flexible slender propulsor , 1979, Journal of Fluid Mechanics.

[33]  James Buchholz,et al.  Vortex dynamics and performance of flexible and rigid plunging airfoils , 2015 .

[34]  J. Hunter,et al.  Swimming and feeding behavior of larval anchovy Engraulis mordax , 1972 .

[35]  G. Lauder,et al.  Passive propulsion in vortex wakes , 2006, Journal of Fluid Mechanics.

[36]  T. Y. Wu,et al.  Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid , 1971, Journal of Fluid Mechanics.

[37]  J. Gray Studies in Animal Locomotion: VI. The Propulsive Powers of the Dolphin , 1936 .

[38]  John Young,et al.  Flapping Wing Aerodynamics: Progress and Challenges , 2008 .

[39]  G. Lauder,et al.  Fish Exploiting Vortices Decrease Muscle Activity , 2003, Science.

[40]  Sam Heathcote,et al.  Effect of Spanwise Flexibility on Flapping Wing Propulsion , 2006 .

[41]  Michael Sfakiotakis,et al.  Review of fish swimming modes for aquatic locomotion , 1999 .

[42]  Amneet Pal Singh Bhalla,et al.  Gray's paradox: A fluid mechanical perspective , 2014, Scientific Reports.

[43]  J. Liao,et al.  The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow , 2006, Journal of Experimental Biology.

[44]  F. Fish,et al.  Strouhal numbers and optimization of swimming by odontocete cetaceans , 2004, Journal of Experimental Biology.

[45]  M. Lighthill Aquatic animal propulsion of high hydromechanical efficiency , 1970, Journal of Fluid Mechanics.

[46]  P. Webb Form and Function in Fish Swimming , 1984 .

[47]  Oh Hyun Rho,et al.  The Modification of Airfoil Shape for Optimal Aerodynamic Performance on Flapping-Airfoil in Low-Reynolds number flow , 2003 .

[48]  C. Breder The locomotion of fishes , 1926 .

[49]  D. Weihs,et al.  Optimal avoidance and evasion tactics in predator-prey interactions , 1984 .

[50]  Hui Hu,et al.  High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion , 2013 .

[51]  I. Borazjani,et al.  On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming , 2010, Journal of Experimental Biology.

[52]  Michael S. Triantafyllou,et al.  Forces on oscillating foils for propulsion and maneuvering , 2003 .

[53]  F.S. Hover,et al.  Review of experimental work in biomimetic foils , 2004, IEEE Journal of Oceanic Engineering.

[54]  M. Triantafyllou,et al.  Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils , 2014, Journal of Fluid Mechanics.

[55]  Ikuo Yamamoto,et al.  Research on Flexible Oscillating Fin Propulsion System and Robotic Fish , 2001 .

[56]  J. Liao Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Kármán gait , 2004, Journal of Experimental Biology.

[57]  I. E. Garrick Propulsion of a flapping and oscillating airfoil , 1936 .

[58]  M. Triantafyllou,et al.  Oscillating foils of high propulsive efficiency , 1998, Journal of Fluid Mechanics.

[59]  Ashok Gopalarathnam,et al.  Effect of airfoil shape and Reynolds number on leading edge vortex shedding in unsteady flows , 2012 .

[60]  Ma Dongli,et al.  Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number , 2015 .

[61]  Paulo Ferreira de Sousa,et al.  Thrust efficiency of harmonically oscillating flexible flat plates , 2011, Journal of Fluid Mechanics.

[62]  Desmond Morris,et al.  The Spines of Sticklebacks (Gasterosteus and Pygosteus) as Means of Defence Against Predators (Perca and Esox) , 1956 .

[63]  P. Webb,et al.  Strike tactics of Esox. , 1980, Canadian journal of zoology.

[64]  A. Oyama,et al.  A numerical study of the effects of aerofoil shape on low reynolds number aerodynamics , 2012 .

[65]  J. Wesfreid,et al.  Stabilizing effect of flexibility in the wake of a flapping foil , 2012, Journal of Fluid Mechanics.