Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness.

We report the fine-tuning of the relaxometry of gamma-Fe2O3@SiO2 core-shell nanoparticles by adjusting the thickness of the coated silica layer. It is clear that the coating thickness of Fe2O3@SiO2 nanoparticles has a significant impact on the r(1) (at low B0 fields), r(2), and r(2)* relaxivities of their aqueous suspensions. These studies clearly indicate that the silica layer is heterogeneous and has regions that are porous to water and others-that are not. It is also shown, that the viability and the mitochondrial dehydrogenase expression of the microglial cells do not appear to be sensitive to the vesicular load with these core-shell nanoparticles. The adequate silica-shell thickness can therefore be tuned to allow for both a sufficiently high response as contrast agent, and-adequate grafting of targeted biomolecules.

[1]  A. Caneschi,et al.  Water-soluble rhamnose-coated Fe3O4 nanoparticles. , 2009, Organic letters.

[2]  M. Delville,et al.  Thermochromic phase transition on CuMo0.9W0.1O4@SiO2 core-shell particles. , 2009, Inorganic chemistry.

[3]  Changzhong Jiang,et al.  Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies , 2008, Nanoscale research letters.

[4]  Joop A. Peters,et al.  NMR transversal relaxivity of aqueous suspensions of particles of Ln(3+)-based zeolite type materials. , 2008, Dalton transactions.

[5]  Gang Bao,et al.  Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity , 2007, Journal of magnetic resonance imaging : JMRI.

[6]  Antonia Denkova,et al.  NMR Transversal Relaxivity of Suspensions of Lanthanide Oxide Nanoparticles , 2007 .

[7]  M. Delville,et al.  Use of lanthanide-grafted inorganic nanoparticles as effective contrast agents for cellular uptake imaging. , 2007, Bioconjugate chemistry.

[8]  Jing Sun,et al.  Synthesis and characterization of biocompatible Fe3O4 nanoparticles. , 2007, Journal of biomedical materials research. Part A.

[9]  Philippe Robert,et al.  Recent advances in iron oxide nanocrystal technology for medical imaging. , 2006, Advanced drug delivery reviews.

[10]  B. Korgel,et al.  Synthesis and magnetic properties of colloidal MnPt3 nanocrystals. , 2006, The journal of physical chemistry. B.

[11]  Etienne Duguet,et al.  Magnetic nanoparticle design for medical applications , 2006 .

[12]  T. Nann,et al.  Single Quantum Dots in Silica Spheres by Microemulsion Synthesis , 2005 .

[13]  I. Chourpa,et al.  Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. , 2005, The Analyst.

[14]  Chi-Hwa Wang,et al.  Self-Assembled Biodegradable Nanoparticles Developed by Direct Dialysis for the Delivery of Paclitaxel , 2005, Pharmaceutical Research.

[15]  Kemin Wang,et al.  An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles , 2005, Talanta.

[16]  C. Elissalde,et al.  Controlled growth of silica shell on Ba0.6Sr0.4TiO3 nanoparticles used As precursors of ferroelectric composites , 2005 .

[17]  Mathias Hoehn,et al.  Cellular MR Imaging , 2005, Molecular imaging.

[18]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[19]  S. Laurent,et al.  C-MALISA (cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI. , 2005, Journal of inorganic biochemistry.

[20]  Gang Bao,et al.  Magnetic nanoparticle probes , 2005 .

[21]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[22]  Jinda Fan,et al.  Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions. , 2005, Organic letters.

[23]  D. Leslie-Pelecky,et al.  Iron oxide nanoparticles for sustained delivery of anticancer agents. , 2005, Molecular pharmaceutics.

[24]  Jackie Y Ying,et al.  Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. , 2005, Journal of the American Chemical Society.

[25]  M. Bawendi,et al.  Phosphine oxide polymer for water-soluble nanoparticles. , 2005, Journal of the American Chemical Society.

[26]  M. Delville,et al.  Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[27]  Xiaogang Peng,et al.  Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach , 2004 .

[28]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[29]  G. Shan,et al.  Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization , 2004 .

[30]  Chad A Mirkin,et al.  Bio-bar-code-based DNA detection with PCR-like sensitivity. , 2004, Journal of the American Chemical Society.

[31]  Joachim O. Rädler,et al.  Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals , 2004 .

[32]  I. Willner,et al.  Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells. , 2004, Journal of the American Chemical Society.

[33]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[34]  Xiaogang Peng,et al.  Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. , 2003, Journal of the American Chemical Society.

[35]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[36]  Ralph Weissleder,et al.  Magnetic sensors for protease assays. , 2003, Angewandte Chemie.

[37]  Xiaogang Peng,et al.  Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. , 2003, Journal of the American Chemical Society.

[38]  Horst Weller,et al.  Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals , 2002 .

[39]  G. A. Prinz,et al.  Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor , 2002 .

[40]  Horst Weller,et al.  Ligand design and bioconjugation of colloidal gold nanoparticles. , 2002, Angewandte Chemie.

[41]  Younan Xia,et al.  Synthesis and Self-Assembly of Au@SiO2 Core−Shell Colloids , 2002 .

[42]  J. Benoit,et al.  Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[43]  H. Isoniemi,et al.  Efficacy of sequential use of superparamagnetic iron oxide and gadolinium in liver MR imaging. , 2002, Acta radiologica.

[44]  H. Isoniemi,et al.  Efficacy of sequential use of superparamagnetic iron oxide and gadolinium in liver MR imaging , 2002 .

[45]  Ralph Weissleder,et al.  Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. , 2002, Bioconjugate chemistry.

[46]  R. Brooks,et al.  On T2‐shortening by strongly magnetized spheres: A partial refocusing model , 2002, Magnetic resonance in medicine.

[47]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[48]  Shimon Weiss,et al.  Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots† , 2001 .

[49]  C Alexiou,et al.  Clinical applications of magnetic drug targeting. , 2001, The Journal of surgical research.

[50]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[51]  E. Paterson The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses , 1999 .

[52]  Babeş,et al.  Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. , 1999, Journal of colloid and interface science.

[53]  Okuhata,et al.  Delivery of diagnostic agents for magnetic resonance imaging. , 1999, Advanced drug delivery reviews.

[54]  Peter Wust,et al.  Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro , 1999 .

[55]  Robert N. Muller,et al.  Theory of proton relaxation induced by superparamagnetic particles , 1999 .

[56]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[57]  Sheng-Li Chen,et al.  Characteristic Aspects of Formation of New Particles during the Growth of Monosize Silica Seeds , 1996 .

[58]  P. Bunn,et al.  Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer , 1993 .

[59]  M. Guéron,et al.  Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism , 1975 .

[60]  S. Laurent,et al.  Specific E-selectin targeting with a superparamagnetic MRI contrast agent. , 2006, Contrast media & molecular imaging.

[61]  J. Bulte Intracellular endosomal magnetic labeling of cells. , 2006, Methods in molecular medicine.

[62]  L. Josephson Magnetic Nanoparticles for MR Imaging , 2006 .

[63]  王维,et al.  Characteristics of magnetic Fe3O4 nanoparticles encapsulated with human serum albumin , 2006 .

[64]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[65]  Catherine C. Berry,et al.  Functionalisation of magnetic nanoparticles for applications in biomedicine : Biomedical applications of magnetic nanoparticles , 2003 .

[66]  É. Duguet,et al.  MAGHEMITE@SILICA NANOPARTICLES FOR BIOLOGICAL APPLICATIONS , 2002 .

[67]  A. Elaissari,et al.  Hydrophilic magnetic latex for nucleic acid extraction, purification and concentration , 2001 .

[68]  J. Rubim,et al.  Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures , 2001 .

[69]  C. Bergemann,et al.  Comparison of different particles and methods for magnetic isolation of circulating tumor cells , 2001 .

[70]  C. Rao,et al.  Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood , 2001 .

[71]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[72]  Hao Zeng,et al.  Monodisperse MFe 2 O 4 ( M ) Fe , Co , Mn ) Nanoparticles , 2022 .