暂无分享,去创建一个
Axel Röbel | Marco Liuni | Péter Balázs | A. Röbel | P. Balázs | M. Liuni
[1] Jelena Kovacevic,et al. An Introduction to Frames , 2008, Found. Trends Signal Process..
[2] Karol Zyczkowski,et al. Rényi Extrapolation of Shannon Entropy , 2003, Open Syst. Inf. Dyn..
[3] Monika Dörfler,et al. Quilted Gabor frames - A new concept for adaptive time-frequency representation , 2009, Adv. Appl. Math..
[4] R. Balan,et al. On signal reconstruction without phase , 2006 .
[5] Axel Röbel,et al. A Reduced Multiple Gabor Frame for Local Time Adaptation of the Spectrogram , 2011, ArXiv.
[6] A. Rényi. On Measures of Entropy and Information , 1961 .
[7] C. Beck,et al. Thermodynamics of chaotic systems: Spin systems , 1993 .
[8] P. Balázs. Basic definition and properties of Bessel multipliers , 2005, math/0510091.
[9] Bruno Torrésani,et al. The Linear Time Frequency Analysis Toolbox , 2012, Int. J. Wavelets Multiresolution Inf. Process..
[10] Yonina C. Eldar,et al. Sub-Nyquist Sampling of Short Pulses: Part I , 2010, ArXiv.
[11] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[12] J P Antoine,et al. FRAMES AND SEMIFRAMES , 2011 .
[13] Bruno Torrésani,et al. Time-Frequency Jigsaw Puzzle: Adaptive Multiwindow and Multilayered Gabor Expansions , 2007, Int. J. Wavelets Multiresolution Inf. Process..
[14] Peter Balazs,et al. Weighted and Controlled Frames , 2006 .
[15] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[16] Olivier J. J. Michel,et al. Measuring time-Frequency information content using the Rényi entropies , 2001, IEEE Trans. Inf. Theory.
[17] Peter Balazs,et al. Nonstationary Gabor Frames , 2009 .
[18] Nicki Holighaus,et al. Theory, implementation and applications of nonstationary Gabor frames , 2011, J. Comput. Appl. Math..
[19] Jae Lim,et al. Signal estimation from modified short-time Fourier transform , 1984 .
[20] Peter Balazs,et al. Frames and semi-frames , 2011, 1101.2859.