Efficient evaluation of analytic vibrational frequencies in Hartree-Fock and density functional theory for periodic nonconducting systems.

We report a method for the efficient evaluation of analytic energy second derivatives with respect to in-phase nuclear coordinate displacements within Hartree-Fock and Kohn-Sham density functional theories using Gaussian orbitals and periodic boundary conditions. The use of an atomic orbital formulation for all computationally challenging steps allows us to adapt the direct space fast multipole method for the Coulomb-type infinite summations. Our implementation also exploits the local character of the exact Hartree-Fock exchange in nonconducting systems. Exchange-correlation contributions are computed using extensive screening and fast numerical quadratures. We benchmark our scheme for in-phase vibrational frequencies of a trans-polyacetylene chain, a two-dimensional boron nitride sheet, and bulk diamond with the 6-31G** basis set and various density functionals. A study of computational scaling with the size of the unit cell for trans-polyacetylene reveals subquadratic scaling for our scheme.

[1]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[2]  G. Scuseria,et al.  Linear-scaling calculation of static and dynamic polarizabilities in Hartree-Fock and density functional theory for periodic systems. , 2006, The Journal of chemical physics.

[3]  Michael J Frisch,et al.  Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. , 2006, The Journal of chemical physics.

[4]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[5]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[6]  I. Ciofini,et al.  Effect of self-interaction error in the evaluation of the bond length alternation in trans-polyacetylene using density-functional theory. , 2005, The Journal of chemical physics.

[7]  Maykel Pérez González,et al.  A new search algorithm for QSPR/QSAR theories: Normal boiling points of some organic molecules , 2005 .

[8]  Georg Kresse,et al.  The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. , 2005, The Journal of chemical physics.

[9]  M. Challacombe,et al.  Linear scaling computation of the Fock matrix. VIII. Periodic boundaries for exact exchange at the Γ point , 2004, cond-mat/0405500.

[10]  Gustavo E Scuseria,et al.  Importance of chain-chain interactions on the band gap of trans-polyacetylene as predicted by second-order perturbation theory. , 2004, The Journal of chemical physics.

[11]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[12]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[13]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[14]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[15]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[16]  Denis Jacquemin,et al.  Analytic ab initio determination of the elastic modulus in stereoregular polymers: Analytical integral derivatives, long-range effects, implementation, and examples , 2003 .

[17]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[18]  Philippe Y. Ayala,et al.  Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems , 2001 .

[19]  Gustavo E. Scuseria,et al.  A redundant internal coordinate algorithm for optimization of periodic systems , 2001 .

[20]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[21]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[22]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[23]  M. Ratner Molecular electronic-structure theory , 2000 .

[24]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. IV. Multipole accelerated formation of the exchange matrix , 1999 .

[25]  G. Scuseria,et al.  Range definitions for Gaussian-type charge distributions in fast multipole methods , 1999 .

[26]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[27]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[28]  S. Hirata,et al.  Density functional crystal orbital study on the normal vibrations and phonon dispersion curves of all-trans polyethylene , 1998 .

[29]  S. Hirata,et al.  ANALYTICAL SECOND DERIVATIVES IN AB INITIO HARTREE-FOCK CRYSTAL ORBITAL THEORY OF POLYMERS , 1998 .

[30]  R. Bartlett,et al.  Analytical evaluation of energy derivatives in extended systems. I. Formalism , 1998 .

[31]  Gustavo E. Scuseria,et al.  A fast multipole algorithm for the efficient treatment of the Coulomb problem in electronic structure calculations of periodic systems with Gaussian orbitals , 1998 .

[32]  Martin Head-Gordon,et al.  PERIODIC BOUNDARY CONDITIONS AND THE FAST MULTIPOLE METHOD , 1997 .

[33]  S. Hirata,et al.  Density functional crystal orbital study on the normal vibrations of polyacetylene and polymethineimine , 1997 .

[34]  M. Kertész,et al.  The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene , 1997 .

[35]  C. Q. Wu,et al.  LETTER TO THE EDITOR: An ab initio approach to phonon spectrum of trans-polyacetylene , 1997 .

[36]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[37]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  G. Scuseria,et al.  Kohn-Sham analytic energy second derivatives with the Gaussian very fast multipole method (GvFMM) , 1996 .

[41]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[42]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[43]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[44]  G. Scuseria,et al.  Analytic energy gradients for the Gaussian very fast multipole method (GvFMM) , 1996 .

[45]  Walter Kohn,et al.  Density functional theory for systems of very many atoms , 1995 .

[46]  Suhai Electron correlation and dimerization in trans-polyacetylene: Many-body perturbation theory versus density-functional methods. , 1995, Physical review. B, Condensed matter.

[47]  Gustavo E. Scuseria,et al.  A quantitative study of the scaling properties of the Hartree–Fock method , 1995 .

[48]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[49]  Benny G. Johnson,et al.  An implementation of analytic second derivatives of the gradient‐corrected density functional energy , 1994 .

[50]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[51]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[52]  von Boehm J,et al.  Density-functional study of the dimerization of trans-polyacetylene. , 1992, Physical review. B, Condensed matter.

[53]  Benny G. Johnson,et al.  Two‐electron repulsion integrals over Gaussian s functions , 1991 .

[54]  Campbell,et al.  First-principles calculations of the three-dimensional structure and intrinsic defects in trans-polyacetylene. , 1990, Physical review. B, Condensed matter.

[55]  Michael J. Frisch,et al.  Direct analytic SCF second derivatives and electric field properties , 1990 .

[56]  Wang,et al.  Ground state of trans-polyacetylene and the Peierls mechanism. , 1989, Physical review letters.

[57]  Campbell,et al.  Three-dimensional structure and intrinsic defects in trans-polyacetylene. , 1989, Physical review letters.

[58]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[59]  H. Shirakawa,et al.  Density of vibrational states in trans-polyene: comparison with the infrared, Raman and neutron spectra of trans-polyacetylene , 1987 .

[60]  White,et al.  Local-density-functional results for the dimerization of trans-polyacetylene: Relationship to the band-gap problem. , 1987, Physical review. B, Condensed matter.

[61]  J. Ladik,et al.  The infrared and Raman spectrum of trans-polyacetylene: a self-consistent-field study , 1985 .

[62]  C. S. Yannoni,et al.  Molecular Geometry of cis- and trans-Polyacetylene by Nutation NMR Spectroscopy , 1983 .

[63]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .

[64]  L. Piela,et al.  Multipole expansion in tight-binding Hartree-Fock calculations for infinite model polymers , 1980 .

[65]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[66]  H. Kuzmany Resonance Raman Scattering from Neutral and Doped Polyacetylene , 1980 .

[67]  John P. McTague,et al.  Molecular Vibrations in Crystals , 1978 .

[68]  A. Katzir,et al.  Optical properties of hexagonal boron nitride , 1976 .

[69]  H. Shirakawa,et al.  Infrared Spectra of Poly(acetylene) , 1971 .