A goal-oriented adaptive finite-element method for 3D scattered airborne electromagnetic method modeling

ABSTRACTWe have developed a goal-oriented adaptive unstructured finite-element method based on the scattered field for 3D frequency-domain airborne electromagnetic (AEM) modeling. To guarantee the EM field divergence free within each element and the continuity conditions at electrical material interfaces, we have used the edge-based shape functions to approximate the electrical field. The posterior error for finite-element adaptive meshing procedure is estimated from the continuity of the normal component of the current density, whereas the influence functions are estimated by solving a dual forward problem. Because the imaginary part of the scattered current is discontinuous and the real part is continuous, we use the latter to estimate the posterior error. For the multisources and multifrequencies problem in AEM, we calculate the weighted posterior error for each element by considering only those transmitter-receiver pairs that do not adhere to our convergence criteria. Finally, we add a minimum volume ...

[1]  Oszkar Biro,et al.  Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials , 2001 .

[2]  J. G. Paine,et al.  Applying Airborne Electromagnetic Induction In Groundwater Salinization And Resource Studies, West Texas , 2003 .

[4]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[5]  K. Cahill,et al.  Utilising airborne electromagnetic data to map groundwater salinity and salt store at Chowilla, SA. , 2009 .

[6]  Colin Farquharson,et al.  A finite-volume solution to the geophysical electromagnetic forward problem using unstructured grids , 2014 .

[7]  Myung Jin Nam,et al.  3D magnetotelluric modelling including surface topography , 2007 .

[8]  Rita Streich,et al.  3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .

[9]  Hongzhu Cai,et al.  3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method , 2014, Comput. Geosci..

[10]  Y. Mitsuhata 2-D electromagnetic modeling by finite‐element method with a dipole source and topography , 2000 .

[11]  Misac N. Nabighian,et al.  Electromagnetic Methods in Applied Geophysics: Voume 1, Theory , 1988 .

[12]  Michael Commer,et al.  A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources , 2004 .

[13]  Douglas W. Oldenburg,et al.  Three dimensional inversion of multisource time domain electromagnetic data , 2013 .

[14]  Chester J. Weiss,et al.  Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example , 2005 .

[15]  A. Raiche,et al.  The effect of topography on airborne electromagnetic response , 1998 .

[16]  Frank A. Maaø,et al.  Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems , 2007 .

[18]  Cai Jin Weighted Laterally-constrained inversion of frequency-domain airborne EM data , 2014 .

[19]  Jingtian Tang,et al.  3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method , 2010 .

[20]  Christoph Schwarzbach,et al.  Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example , 2011 .

[21]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[22]  Hiroomi Nakazato,et al.  Topographic effects in frequency-domain helicopter-borne electromagnetics , 2003 .

[23]  Yin Chang,et al.  The full-time electromagnetic modeling for time-domain airborne electromagnetic systems , 2013 .

[24]  J. G. Paine,et al.  APPLYING AIRBORNE ELECTROMAGNETIC INDUCTION IN GROUND- WATER SALINIZATION AND RESOURCE STUDIES, WEST TEXAS , 2003 .

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  Adam Zdunek,et al.  A goal-oriented hp-adaptive finite element approach to radar scattering problems , 2005 .

[27]  M. Zhdanov,et al.  Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity , 2006 .

[28]  O. Bíró Edge element formulations of eddy current problems , 1999 .

[29]  K. Baba,et al.  A new technique for the incorporation of seafloor topography in electromagnetic modelling , 2002 .

[30]  David L. Alumbaugh,et al.  3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach , 2010 .