Magnetism of pure iron jarosites

Stoichiometrically pure jarosites of the formula $A{\mathrm{Fe}}_{3}(\mathrm{OH}{)}_{6}({\mathrm{SO}}_{4}{)}_{2}$ with $A={\mathrm{Na}}^{+},$ ${\mathrm{K}}^{+},$ ${\mathrm{Rb}}^{+},$ and ${\mathrm{NH}}_{4}^{+}$ have been afforded by a newly developed redox-based, hydrothermal method. The jarosites exhibit an intralayer antiferromagnetic exchange interaction $(\ensuremath{-}829\mathrm{K}l{\ensuremath{\Theta}}_{\mathrm{CW}}l\ensuremath{-}812\mathrm{K})$ and transition temperatures for long-range order (LRO) $(61\mathrm{K}l{T}_{N}l65\mathrm{K})$ that are essentially insensitive to the size of the ${A}^{+}$ ion. A cusp at ${T}_{N}$ in the ac susceptibility curve is frequency independent. The origin of LRO is consistent with coupling of jarosite layers exhibiting a net magnetization, which arises from an anisotropy developed, most likely, from the Dzyaloshinsky-Moriya (DM) interaction. A canted intralayer spin structure, which is a consequence of the DM interaction, is signified by a remanent magnetization $(\ensuremath{\sim}53\mathrm{K}l{T}_{D}l\ensuremath{\sim}58\mathrm{K}),$ the magnitude of which depends on crystallite size. X-ray single crystal analyses of the pure ${\mathrm{Fe}}^{3+}$ jarosite compounds reveal that the kagom\'e layers are structurally invariant with those of their ${\mathrm{Cr}}^{3+}$ and ${\mathrm{V}}^{3+}$ relatives. This structural homology allows the sign and magnitude of exchange coupling within kagom\'e layers to be correlated to the different orbital parentages engendered by the ${M}^{3+}$ d-electron count. Infrared studies show the presence of ${\mathrm{H}}_{2}\mathrm{O}$ within the kagom\'e layers of alkali metal and hydronium ion ${\mathrm{Fe}}^{3+}$ jarosites prepared by conventional precipitation methods; conversely, ${\mathrm{H}}_{2}\mathrm{O}$ is absent within the kagom\'e layers of jarosites prepared by the new redox-based hydrothermal methods. These results suggest that the absence of LRO in $({\mathrm{H}}_{3}\mathrm{O}){\mathrm{Fe}}_{3}(\mathrm{OH}{)}_{6}({\mathrm{SO}}_{4}{)}_{2}$ is due to structural and magnetic disorder arising from proton transfer from the interlayer hydronium ion to the bridging hydroxide ions of the kagom\'e layers.

[1]  D. Nocera,et al.  Magnetic properties of a homologous series of vanadium jarosite compounds. , 2002, Journal of the American Chemical Society.

[2]  D. Nocera,et al.  Hydrothermal oxidation-reduction methods for the preparation of pure and single crystalline alunites: synthesis and characterization of a new series of vanadium jarosites. , 2002, Journal of the American Chemical Society.

[3]  P. Gütlich,et al.  Pressure effect on the magnetism of layered copper(II) compounds with interlayer spacing up to 40.7 Å: Nature of the magnetic ordering , 2002 .

[4]  A. Wills Conventional and Unconventional Orderings in the Jarosites. , 2001, cond-mat/0110624.

[5]  H. Okumura,et al.  Magnetic ordering in the kagom lattice antiferromagnet KCr3(OD)6(SO4)2 , 2001 .

[6]  D. Nocera,et al.  NaV3 (OH)6 (SO4 )2 : A Kagomé-Type Vanadium(III) Compound with Strong Intralayer Ferromagnetic Interactions. , 2001, Angewandte Chemie.

[7]  A. Harrison,et al.  Magnetic ordering in diluted kagome antiferromagnets , 2001 .

[8]  M. Whittingham,et al.  Sodium trivanadium(III) bis(sulfate) hexahydroxide. , 2000, Acta Crystallographica Section C: Crystal Structure Communications.

[9]  A. Harrison,et al.  μSR studies of the kagomé antiferromagnet (H3O)Fe3(OH)6(SO4)2 , 2000 .

[10]  S. Maegawa,et al.  Magnetic ordering and fluctuation in Kagome lattice anti-ferromagnets Fe and Cr jarosites , 2000, cond-mat/0006343.

[11]  S. Maegawa,et al.  Magnetic structure of the kagom lattice antiferromagnet potassium jarosite KFe3(OH)6(SO4)2 , 2000 .

[12]  Ronald I. Smith,et al.  Magnetic properties of pure and diamagnetically doped jarosites: Model kagome antiferromagnets with variable coverage of the magnetic lattice , 2000 .

[13]  V. Dupuis,et al.  Aging in a topological spin glass , 2000, cond-mat/0001344.

[14]  A. Michel,et al.  Directional effects of heavy-ion irradiation in Tb/Fe multilayers , 2000 .

[15]  J. Jambor,et al.  Nomenclature of the alunite supergroup , 1999 .

[16]  S. Pouget,et al.  NEUTRON SPIN ECHO STUDY OF MAGNETIC FLUCTUATIONS IN THE KAGOME ANTIFERROMAGNET (D3O)FE3(SO4)2(OD)6 , 1999 .

[17]  K. H. Andersen,et al.  A polarised neutron scattering study of the magnetic correlations in the kagome antiferromagnet , 1999 .

[18]  J. E. Jackson,et al.  FROM MOLECULES TO THE CRYSTALLINE SOLID : SECONDARY HYDROGEN-BONDING INTERACTIONS OF SALT BRIDGES AND THEIR ROLE IN MAGNETIC EXCHANGE , 1999 .

[19]  R. Cava,et al.  The effect of gallium substitution for iron on the magnetic properties of hydronium iron jarosite , 1999 .

[20]  K. Sasaki,et al.  Distinction of jarosite-group compounds by Raman spectroscopy , 1998 .

[21]  M. Rosseinsky,et al.  Synthesis, Structure, and Magnetic Properties of NaTiO2 , 1998 .

[22]  A. Harrison,et al.  Long-range order induced by diamagnetic dilution of jarosites, model Kagomé antiferromagnets , 1997 .

[23]  L. Heller,et al.  Less than 50% sublattice polarization in an insulating S = 3 2 kagomé antiferromagnet at T ≈ 0 , 1997, cond-mat/9705014.

[24]  M. Takano,et al.  Observation of successive phase transitions in Kagomé lattice antiferromagnets RFe3(OH)6(SO4)2 [R = NH4,Na,K] , 1996 .

[25]  Cheong,et al.  Interaction-Induced Spin Coplanarity in a Kagomé Magnet: SrCr9pGa 12-9pO19. , 1996, Physical review letters.

[26]  T. Mason,et al.  Magnetic correlations in deuteronium jarosite, a model S = 5/2 Kagomé antiferromagnet , 1996, cond-mat/9607106.

[27]  Wu,et al.  Muon-spin-rotation measurements in the kagomé lattice systems: Cr-jarosite and Fe-jarosite. , 1996, Physical review. B, Condensed matter.

[28]  A. Harrison,et al.  Structure and magnetism of hydronium jarosite, a model Kagomé antiferromagnet , 1996 .

[29]  Nguyen,et al.  Magnetic studies of some orthovanadates. , 1995, Physical review. B, Condensed matter.

[30]  Arthur P. Ramirez,et al.  Strongly Geometrically Frustrated Magnets , 1994 .

[31]  Reimers,et al.  Order by disorder in the classical Heisenberg kagomé antiferromagnet. , 1993, Physical review. B, Condensed matter.

[32]  Rouco,et al.  Magnetic dilution in the strongly frustrated kagome antiferromagnet SrGa12-xCrxO19. , 1992, Physical review. B, Condensed matter.

[33]  K. Hirakawa,et al.  Phase Transition in NaTiO2: A Candidate for S=1/2 Triangular Heisenberg Antiferromagnet , 1992 .

[34]  J. Chalker,et al.  Hidden order in a frustrated system: Properties of the Heisenberg Kagomé antiferromagnet. , 1992, Physical review letters.

[35]  Harris,et al.  Possible Néel orderings of the Kagomé antiferromagnet. , 1992, Physical review. B, Condensed matter.

[36]  D. Kurtz Oxo- and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit , 1990 .

[37]  Cooper,et al.  Strong frustration and dilution-enhanced order in a quasi-2D spin glass. , 1990, Physical review letters.

[38]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[39]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[40]  C. Ratcliffe,et al.  HYDRONIUM ION IN TFIE ALUNITE _ JAROSITE GROUP , 1986 .

[41]  Townsend,et al.  Triangular-spin, kagome plane in jarosites. , 1986, Physical review. B, Condensed matter.

[42]  J. T. Szymański The crystal structure of plumbojarosite Pb[Fe 3 (SO 4 ) 2 (OH) 6 ] 2 , 1985 .

[43]  J. Dutrizac Factors affecting alkali jarosite precipitation , 1983 .

[44]  Toshio Kato,et al.  The crystal structures of jarosite and svanbergite , 1977 .

[45]  C. O'connor,et al.  Large zero-field splitting in tricesium hexachlorovanadate trihydrate , 1976 .

[46]  A. Afanasev,et al.  Nuclear γ‐resonance in iron sulphates of the jarosite group , 1974 .

[47]  D. Powers,et al.  Magnetic Behavior and Infrared Spectra of Jarosite, Basic Iron Sulfate, and Their Chromate Analogs , 1974 .

[48]  A. P. Gingsberg Magnetic exchange in transition metal complexes vi: Aspects of exchange coupling in magnetic cluster complexes , 1971 .

[49]  M. Takano,et al.  On the Spin Arrangement in “Kagome” Lattice of Antiferromagnetic KFe3(OH)6(SO4)2 , 1971 .

[50]  M. Takano,et al.  Magnetic Properties of Jarosites, RFe 3 (OH) 6 (SO 4 ) 2 (R=NH 4 , Na or K) , 1968 .

[51]  W. Bradley,et al.  The crystal structure of alunite , 1965 .

[52]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[53]  John B. Goodenough,et al.  An interpretation of the magnetic properties of the perovskite-type mixed crystals La1-xSrxCoO3-λ , 1958 .

[54]  S. Hendricks The crystal structure of alunite and the jarosites , 1937 .